Automated Phenotyping in Epilepsy

癫痫的自动表型分析

基本信息

  • 批准号:
    10410427
  • 负责人:
  • 金额:
    $ 42.27万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-09-30 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

There are 65 million people worldwide with epilepsy and 150,000 new cases of epilepsy are diagnosed in the US annually. However, treatment options for epilepsy remain inadequate, with many patients suffering from treatment-resistant seizures, cognitive comorbidities and the negative side effects of treatment. A major obstacle to progress towards the development of new therapies is the fact that preclinical epilepsy research typically requires labor-intensive and expensive 24/7 video-EEG monitoring of seizures that rests on the subjective scoring of seizure phenotypes by human observers (as exemplified by the widely used Racine scale of behavioral seizures). Recently, the Datta lab showed that complex animal behaviors are structured in stereotyped modules (“syllables”) at sub-second timescales and arranged according to specific rules (“grammar”). These syllables can be detected without observer bias using a method called motion sequencing (MoSeq) that employs video imaging with a 3D camera combined with artificial intelligence (AI)-assisted video analysis to characterize behavior. Through collaboration between the Soltesz and Datta labs, exciting data were obtained that demonstrated that MoSeq can be adapted for epilepsy research to perform objective, inexpensive and automated phenotyping of mice in a mouse model of chronic temporal lobe epilepsy. Here we propose to test and improve MoSeq further to address long-standing, fundamental challenges in epilepsy research. This includes the development of an objective alternative to the Racine scale, testing of MoSeq as an automated anti-epileptic drug (AED) screening method, and the development of human observer- independent behavioral biomarkers for seizures, epileptogenesis, and cognitive comorbidities. In addition, we plan to dramatically extend the epilepsy-related capabilities of MoSeq to include the automated tracking of finer-scale body parts (e.g., forelimb and facial clonus) that are not possible with the current approach. Finally, we propose to develop the analysis pipeline for MoSeq into a form that is intuitive, inexpensive, user-friendly and thus easily sharable with the research community. We anticipate that these results will have a potentially transformative effect on the field by demonstrating the feasibility and power of automated, objective, user- independent, inexpensive analysis of both acquired and genetic epilepsy phenotypes.
全世界有6500万人患有癫痫,15万例新的癫痫病例被诊断出来, 美国每年。然而,癫痫的治疗选择仍然不足,许多患者患有 难治性癫痫发作、认知合并症和治疗的负面副作用。一个主要 临床前癫痫研究是开发新疗法的障碍, 通常需要劳动密集型和昂贵的24/7视频脑电图监测癫痫发作, 由人类观察者对癫痫发作表型进行主观评分(如广泛使用的Racine量表所示 行为癫痫发作)。最近,达塔实验室表明,复杂的动物行为是在 亚秒级时间尺度的定型模块(“音节”),并根据特定规则排列 (“grammar”)。这些音节可以检测到没有观察者偏见使用一种方法称为运动排序 (MoSeq)采用3D相机的视频成像与人工智能(AI)辅助视频相结合 分析以描述行为。通过Soltesz和Datta实验室之间的合作, 证明MoSeq可以适用于癫痫研究, 在慢性颞叶癫痫小鼠模型中对小鼠进行廉价和自动化的表型分析。这里我们 建议进一步测试和改进MoSeq,以解决癫痫长期存在的根本挑战 research.这包括开发Racine量表的客观替代品,测试MoSeq作为 一种自动化的抗癫痫药物(AED)筛选方法,以及人类观察者的发展, 癫痫发作、癫痫发生和认知共病的独立行为生物标志物。另外我们 计划大幅扩展MoSeq的癫痫相关功能,包括自动跟踪 更精细尺度的身体部分(例如,前肢和面部阵挛),这是目前的方法不可能实现的。最后, 我们建议将MoSeq的分析管道开发成直观、廉价、用户友好的形式 因此很容易与研究团体共享。我们预计,这些结果将有可能 通过展示自动化,客观,用户- 获得性和遗传性癫痫表型的独立、廉价分析。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sandeep R Datta其他文献

Sandeep R Datta的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sandeep R Datta', 18)}}的其他基金

Development and validation of a porcine model of spinal cord injury-induced neuropathic pain
脊髓损伤引起的神经性疼痛猪模型的开发和验证
  • 批准号:
    10805071
  • 财政年份:
    2023
  • 资助金额:
    $ 42.27万
  • 项目类别:
Neurobehavioral phenotyping of AD model mice using Motion Sequencing
使用运动测序对 AD 模型小鼠进行神经行为表型分析
  • 批准号:
    10281230
  • 财政年份:
    2021
  • 资助金额:
    $ 42.27万
  • 项目类别:
CounterAct Administrative Supplement to NS114020 Automated Phenotyping in Epilepsy
CounterAct NS114020 癫痫自动表型分析行政补充
  • 批准号:
    10227611
  • 财政年份:
    2020
  • 资助金额:
    $ 42.27万
  • 项目类别:
The Structure of Olfactory Neural and Perceptual Spaces
嗅觉神经和知觉空间的结构
  • 批准号:
    10413209
  • 财政年份:
    2019
  • 资助金额:
    $ 42.27万
  • 项目类别:
Data Science Core
数据科学核心
  • 批准号:
    10460154
  • 财政年份:
    2019
  • 资助金额:
    $ 42.27万
  • 项目类别:
Automated Phenotyping in Epilepsy
癫痫的自动表型分析
  • 批准号:
    10621942
  • 财政年份:
    2019
  • 资助金额:
    $ 42.27万
  • 项目类别:
The Structure of Olfactory Neural and Perceptual Spaces
嗅觉神经和知觉空间的结构
  • 批准号:
    10200169
  • 财政年份:
    2019
  • 资助金额:
    $ 42.27万
  • 项目类别:
Exploring dopamine function during naturalistic behavior
探索自然行为中的多巴胺功能
  • 批准号:
    10687836
  • 财政年份:
    2019
  • 资助金额:
    $ 42.27万
  • 项目类别:
Data Science Core
数据科学核心
  • 批准号:
    10701329
  • 财政年份:
    2019
  • 资助金额:
    $ 42.27万
  • 项目类别:
Automated Phenotyping in Epilepsy
癫痫的自动表型分析
  • 批准号:
    10178133
  • 财政年份:
    2019
  • 资助金额:
    $ 42.27万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 42.27万
  • 项目类别:
    Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 42.27万
  • 项目类别:
    Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 42.27万
  • 项目类别:
    Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 42.27万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 42.27万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 42.27万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 42.27万
  • 项目类别:
    EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 42.27万
  • 项目类别:
    Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 42.27万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 42.27万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了