The UCSC Genome Browser
UCSC 基因组浏览器
基本信息
- 批准号:10411053
- 负责人:
- 金额:$ 398.37万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2001
- 资助国家:美国
- 起止时间:2001-07-12 至 2027-04-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAlgorithmsAllelesAnimal ModelAnimalsArchivesBiochemicalBiological AssayCellsChromosomesClinicalCodeComplexComputer AnalysisComputer softwareCustomDNADNA sequencingDataData ReportingData SetData SourcesDatabasesDesigner DrugsDiploidyDiseaseDisease ProgressionDocumentationDrug DesignEcosystemEngineeringEnsureEthnic OriginEuropeanEyeGene FamilyGenerationsGenesGenetic DiseasesGenetic VariationGenetic studyGenomeGenomicsHaploidyHumanHuman GenomeIndividualInfrastructureIntelligenceInternetMapsMedicalMitochondriaModernizationMolecularMusNational Human Genome Research InstituteNoisePatient CarePerformancePersonally Identifiable InformationPersonsPhysiologyPopulationPublicationsPublishingReproducibilityResearchResearch PersonnelResourcesSamplingScienceScientistSequence AnalysisSeriesSourceSystemTechnologyTestingTextTissuesTranscriptUnderrepresented MinorityUnderserved PopulationUntranslated RNAUpdateVariantVisualizationVisualization softwareWorkannotation systembasebiomedical resourcedata accessdata integrationdesigndiverse datadrug-sensitiveexperiencegene functiongenetic variantgenome annotationgenome browsergenomic datahuman pangenomeimprovedmembernew technologyoutreachpan-genomeprogramsprotein protein interactionreference genomerepositoryside effectsingle cell technologysingle moleculesingle-cell RNA sequencingsoftware developmenttherapy designtoolweb siteweb-based tool
项目摘要
ABSTRACT
The UCSC Genome Browser and associated tools are used by hundreds of thousands of biomedical
researchers including clinical geneticists, bioinformaticians, researchers working with model organisms, and
wet lab scientists researching human physiology at the molecular level in both healthy and disease states. The
browser integrates the results of thousands of biomedical labs – including a wide range of biochemical assays,
genetic studies, curations, sequencing projects, and computer analyses into a series of tracks aligned to the
underlying genomic sequence. The genome provides a natural integration framework for these diverse data
sources, which the browser showcases at a variety of display scales ranging from the single base to individual
genes, entire chromosomes, and ultimately to the genome as a whole.
The Genome Browser is implemented using robust, fast, high-quality software capable of handling over one
million hits per day. This web software provides a window into an exceptionally detailed and well-documented
database that can be queried computationally as well as browsed graphically. The database is loaded with a
suite of programs, developed both at UCSC and elsewhere, capable of distilling huge genomics data sets into
high-quality annotations of the genome. Significant engineering effort is invested to ensure the quality of the
software and data sets, including those developed by external contributors. The system is designed to make it
easy for users to view their own, unpublished, data sets alongside those that we have fully curated and
integrated. Consortia and other resources can make their data visible in our browser via “track hubs.”
We plan to extend our resource in significant ways. We will help make genomics more equitable to currently
underserved populations by moving to a more inclusive “pangenome” reference that includes sequences that
represent the greater genomic diversity of humanity, not just samples of convenience from largely European
populations. We will enable visualization of individual genomes, not just a single haploid reference genome.
We will address the opportunities and challenges of new technologies such as single-cell RNA sequencing and
single-molecule long-read DNA sequencing. We will collaborate with others in the increasingly complex
ecosystem of biomedical consortia and resources, and will integrate their results into the Genome Browser,
and also, through our APIs and our helpful staff, ensure that others can make the best use of data available in
their efforts. We will provide tools and data for medical users to understand the significance of sequence
variants in the patients they care for and will help characterize regions of greater genomic complexity and
medical importance. We will extend our outreach effort to include more online content to help engage a new
generation of users.
抽象的
UCSC 基因组浏览器和相关工具被数十万生物医学工作者使用
研究人员,包括临床遗传学家、生物信息学家、研究模式生物的研究人员,以及
湿实验室科学家在健康和疾病状态的分子水平上研究人体生理学。这
浏览器集成了数千个生物医学实验室的结果 - 包括广泛的生化测定,
基因研究、策划、测序项目和计算机分析成一系列与
基础基因组序列。基因组为这些不同的数据提供了一个自然的整合框架
源,浏览器以各种显示比例展示,从单一基地到单独基地
基因、整个染色体,最终到整个基因组。
基因组浏览器是使用强大、快速、高质量的软件实现的,能够处理超过一个
每天百万次点击。该网络软件提供了一个了解异常详细且记录齐全的信息的窗口
可以通过计算方式查询以及通过图形方式浏览的数据库。数据库加载了一个
UCSC 和其他地方开发的程序套件,能够将巨大的基因组数据集提炼成
基因组的高质量注释。投入了大量的工程工作来确保质量
软件和数据集,包括外部贡献者开发的软件和数据集。该系统的设计目的是使其
用户可以轻松查看自己的、未发布的数据集以及我们完全策划和发布的数据集
融合的。联盟和其他资源可以通过“跟踪中心”在我们的浏览器中显示其数据。
我们计划以重大方式扩展我们的资源。我们将帮助基因组学变得更加公平
通过转向更具包容性的“泛基因组”参考,其中包括以下序列,来解决服务不足的人群
代表了人类更大的基因组多样性,而不仅仅是来自大部分欧洲人的方便样本
人口。我们将实现单个基因组的可视化,而不仅仅是单个单倍体参考基因组。
我们将应对单细胞RNA测序等新技术带来的机遇和挑战
单分子长读DNA测序。我们将在日益复杂的情况下与其他人合作
生物医学联盟和资源的生态系统,并将其结果整合到基因组浏览器中,
此外,通过我们的 API 和乐于助人的员工,确保其他人可以充分利用可用的数据
他们的努力。我们将为医疗用户提供工具和数据来理解序列的意义
他们所照顾的患者中的变异将有助于表征基因组复杂性更高的区域
医学重要性。我们将扩大外展工作,纳入更多在线内容,以帮助吸引新的人
一代用户。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Maximilian Haeussler其他文献
Maximilian Haeussler的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Maximilian Haeussler', 18)}}的其他基金
A visualization interface for BRAIN single cell data, integrating transcriptomics, epigenomics and spatial assays
BRAIN 单细胞数据的可视化界面,集成转录组学、表观基因组学和空间分析
- 批准号:
10643313 - 财政年份:2023
- 资助金额:
$ 398.37万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 398.37万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 398.37万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 398.37万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 398.37万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 398.37万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 398.37万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 398.37万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 398.37万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 398.37万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 398.37万 - 项目类别:
Research Grant














{{item.name}}会员




