A visualization interface for BRAIN single cell data, integrating transcriptomics, epigenomics and spatial assays
BRAIN 单细胞数据的可视化界面,集成转录组学、表观基因组学和空间分析
基本信息
- 批准号:10643313
- 负责人:
- 金额:$ 86.63万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-04-01 至 2026-03-31
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAddressAdoptedAlgorithmic AnalysisAlgorithmsArchivesAtlasesBRAIN initiativeBiological AssayBiological SciencesBrainCellsCellular AssayCensusesChromosomesCollectionComputer AnalysisComputer softwareCustomDataData AnalysesData DisplayData FilesData SetDatabasesDimensionsEnvironmentFundingFutureGene ExpressionGenesGenomicsHourHumanImageInternetKnowledgeLocationMapsMetadataMethylationMicroscopyModalityMolecularOnline SystemsOntologyPatternPhysiologyProcessProviderPublicationsReaction TimeResearch PersonnelRetrievalRiskRunningSecuritySideSliceSpecific qualifier valueStandardizationStructureTechnologyTestingTimeUnited States National Institutes of HealthUniversitiesVisualizationVisualization softwareWorkWritingXCL1 genebrain cellcell typecloud storagecomputerized toolsdata accessdata archivedata centersdata managementdata portaldata reusedata sharingdata structuredata visualizationdesigndifferential expressiondistributed archivesepigenomicsfield studyfile formatflexibilitygenome browserimprovedinterestopen datasexsuccesstooltranscriptomicsuser-friendlyweb site
项目摘要
PROJECT SUMMARY / ABSTRACT
The BRAIN Initiative’s -omics data archive NeMO contains all the BICCN single cell single cell data, more
than one million files at the time of writing. However, no interactive visualization interface to inspect these
results is available and many researchers are not proficient enough with computational tools (download data,
convert, load, plot) to take advantage of the data in NeMO. This makes testing hypotheses by
non-computational researchers a lot harder than necessary but the input from these domain experts and their
knowledge about molecular processes and cell specification is crucial for the interpretation of the data.
Here, I propose to repeat for the single cell field what has made genome browsers a pillar of data sharing: a
standard file format and a visualization tool for it. A new format is a requirement, because in the era of cloud
technology and distributed archives, data is usually not stored locally anymore. Sub-second reaction times
from remote storage are necessary for visualization and possible but existing single cell file formats were not
designed for this access pattern. In addition, for NeMO, being able to keep all results of a single cell assay in
one defined structure makes data management and access easier. We will define such a format, it will
integrate all the main analysis results and will convert all existing processed data in NeMO (not the raw read
data) to the new format.
We will then make the data available for interactive exploration directly on the NeMO website via our UCSC
Cell Browser, which is already running on different University websites. It is actively used already by thousands
of researchers every month to visualize hundreds of single datasets that we collected at UCSC and has been
used for hundreds of scientific publications. We will extend our tool to provide direct support for the most recent
assay and analysis types, mainly ATAC, methylation and spatial transcriptomics imaging data and integrate the
UCSC Genome Browser for chromosome-level views and summaries. An improved split-screen mode will
allow visualizing both spatial and transcriptomic data at the same time. In addition, the Cell Browser will allow
users to run the most fundamental and well-known analysis algorithms on any subset of cells, with a focus on
fast response time so that researchers do not have to download the whole dataset to get differential genes,
dimensionality reduction or specific sub-clustering results of a few selected cell clusters of interest.
Integrating these software features and the NeMO data into a single user-friendly environment will make
sure that the BICCN -omics data can be accessed as easily as possible, which will help accelerate the path to
discovery from the wealth of BRAIN single cell datasets being produced right now and in the future.
项目总结/摘要
BRAIN Initiative的组学数据档案NeMO包含所有BICCN单细胞单细胞数据,更多
超过一百万个文件。然而,没有交互式可视化界面来检查这些
结果是可用的并且许多研究人员对计算工具不够熟练(下载数据,
转换,加载,绘图),以利用NeMO中的数据。这使得测试假设,
非计算研究人员比必要的要难得多,但是来自这些领域专家的输入和他们的
关于分子过程和细胞规格的知识对于数据的解释是至关重要的。
在这里,我建议重复单细胞领域是什么使基因组浏览器成为数据共享的支柱:
标准文件格式和可视化工具。新的格式是一个要求,因为在云时代,
技术和分布式归档,数据通常不再存储在本地。亚秒级反应时间
从远程存储是必要的可视化和可能的,但现有的单细胞文件格式不是
专为这种访问模式设计。此外,对于NeMO,能够将单细胞测定的所有结果保存在
一个定义的结构使得数据管理和访问更容易。我们将定义这样的格式,它将
整合所有主要分析结果,并将转换NeMO中的所有现有处理数据(而不是原始读取
数据)到新格式。
然后,我们将通过我们的UCSC直接在NeMO网站上提供交互式探索数据
细胞浏览器,这是已经在不同的大学网站上运行。它已经被成千上万的人积极使用
每个月都有研究人员可视化我们在UCSC收集的数百个单一数据集,
用于数百种科学出版物。我们将扩展我们的工具,为最近的
检测和分析类型,主要是ATAC,甲基化和空间转录组学成像数据,并整合了
UCSC基因组浏览器,用于染色体水平的视图和摘要。改进的分屏模式将
允许同时可视化空间和转录组数据。此外,Cell Browser将允许
用户可以在任何细胞子集上运行最基本和最知名的分析算法,重点是
快速的响应时间,使研究人员不必下载整个数据集来获得差异基因,
降维或几个所选感兴趣的细胞簇的特定子聚类结果。
将这些软件功能和NeMO数据集成到一个用户友好的环境中,
确保BICCN组学数据可以尽可能容易地访问,这将有助于加快
从现在和未来产生的大量BRAIN单细胞数据集中发现。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Maximilian Haeussler其他文献
Maximilian Haeussler的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Maximilian Haeussler', 18)}}的其他基金
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 86.63万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 86.63万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 86.63万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 86.63万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 86.63万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 86.63万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 86.63万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 86.63万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 86.63万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 86.63万 - 项目类别:
Research Grant














{{item.name}}会员




