Role of ROP GTPases in sulfate transceptor SULTR1;2-regulated sulfur nutrient sensing
ROP GTPases 在硫酸盐受体 SULTR1;2 调节的硫营养物传感中的作用
基本信息
- 批准号:10412405
- 负责人:
- 金额:$ 14.54万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-15 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:AllelesAmino AcidsArabidopsisBindingBiochemicalC-terminalCell NucleusCell membraneCellsCodeComplexCytoplasmDiseaseDrug TargetingElementsEnhancersEnvironmentEukaryotaEventFHL1 geneFamilyGene ExpressionGenesGeneticGenetic TranscriptionGoalsGrowth and Development functionGuanosine Triphosphate PhosphohydrolasesHumanLeadLinkMAP Kinase ModulesMalignant NeoplasmsMeasuresMediatingMineralsModelingModificationMonomeric GTP-Binding ProteinsNitratesNutrientOrganismPathologicPathway interactionsPatternPeptidesPhenotypePhosphoric Monoester HydrolasesPhosphorylationPhysiologicalPlant ModelPlantsPolymerasePost-Translational Protein ProcessingProteinsRNA Polymerase IIRNA polymerase II largest subunitRegulatory ElementReportingResearchRoleSignal TransductionSulfateSulfurSystemTestingTranscription InitiationTranscriptional RegulationWorkYeastsZincactivating transcription factorbasedetection of nutrientdrug developmentgain of functioninorganic phosphateinsightloss of functionmembermutantnovelnutritionplant fungipromoterprotein degradationprotein functionpublic health relevancereceptorrecruitresponserhorho GTP-Binding Proteinssensorsulfate transportertranscription factortranscription factor TFIIHuptake
项目摘要
ABSTRACT
Many living organisms including humans have evolved mechanisms to sense and respond to levels of mineral
nutrients or amino acids. In this application, we propose to use Arabidopsis plant sulfur (S) nutrient sensing
and signaling as an experimental system to dissect transporting receptor-mediated nutrient sensing
mechanisms. Our prior research has led to identification of sulfate transporter SULTR1;2 as a receptor. This
type of dual-function transporting receptor, termed transceptor, has been increasingly found in eukaryotic
organisms and is expected to increase nutrient use efficiency by performing both its sensing and transporting
functions. However, how plants use the transceptor SULTR1;2 to transduce the S signal in the control of gene
expression has remained a central unanswered question and becomes the focus of the present project. Our
recent studies have revealed a conserved shortcut model of transcriptional control that links Rho family small
GTPases to RNA polymerase II (Pol II) C-terminal domain (CTD) Ser phosphorylation across plants, fungi and
humans. The Pol II CTD contains various number of conserved heptad peptide repeats (Y1S2P3T4S5P6S7) in
which each amino acid can be subjected to different posttranslational modifications. Thus, the posttranslational
modification pattern is complex and collectively called the CTD code. Among the CTD code, Ser2 and Ser5
phosphorylation along the gene is very important for initiating transcription and completing the transcription
cycle. In the classical model of transcriptional control, upon activation by Rho or Ras GTPases, the MAP
kinase cascade activates transcription factors that bind to gene-specific cis-elements and helps recruit Pol II to
the core promoter. In contrast, in the shortcut model, Rho GTPase signaling directly targets the Pol II CTD
Ser2 and Ser5 phosphorylation and thus can rapidly bring about large-scale gene expression changes. We
now have preliminary evidence indicating that activity of ROP2 GTPase, which is a member of plant-unique
ROP subfamily of Rho GTPases, and levels of CTD Ser2 and Ser5 phosphorylation are impacted by S status.
In addition, ROP GTPase activity is higher in SULTR1;2 mutants. Therefore, we hypothesize that ROP2 and its
functionally redundant ROP4 act as negative regulators in SULTR1;2-mediated S sensing and signaling. The
proposed work aims to fill the major gaps from SULTR1;2 to Pol II transcription. Specifically, Aim 1 is to test
that ROP2 and ROP4 GTPases act as negative regulators in SULTR1;2-mediated S sensing and signaling
using genetic and biochemical approaches. Aim 2 is to test the hypothesis that ROP2-mediated Pol II shortcut
model is required for S response. In Aim 3, we propose to test that ROP2-controlled SLIM1 transcription factor
activity and ROP2-mediated Pol II CTD code modulation act cooperatively to achieve the most productive
transcription of S-deficiency induced S-response genes. The proposed study will not only lead to novel
mechanistic insights into how plants use nutrient transceptor SULTR1;2 and ROP signaling switch to efficiently
control gene expression but also provide a paradigm for transcriptional regulation in other organisms.
摘要
包括人类在内的许多生物体已经进化出了感知和响应矿物质水平的机制
营养素或氨基酸。在这个应用中,我们建议使用拟南芥植物硫(S)营养感测
和信号传导作为一个实验系统来剖析运输受体介导的营养传感
机制等我们先前的研究已经鉴定了硫酸盐转运蛋白SULTR 1;2作为受体。这
在真核生物中,越来越多的人发现了一种具有双重功能的转运受体,称为转运体
生物,并预计将通过执行其传感和运输来提高养分利用效率
功能协调发展的然而,植物如何利用SULTR 1;2受体来调控S信号在基因调控中的作用,
表达仍然是一个尚未回答的核心问题,并成为本项目的重点。我们
最近的研究揭示了一个保守的转录调控的快捷模式,
RNA聚合酶II(Pol II)的GTP酶C-末端结构域(CTD)跨植物、真菌和真菌的Ser磷酸化
人类Pol II CTD含有不同数量的保守七肽重复序列(Y1 S2 P3 T4 S5 P6 S7),
其中每个氨基酸可以进行不同的翻译后修饰。因此,翻译后
修改模式是复杂的,统称为CTD代码。在CTD代码中,Ser 2和Ser 5
磷酸化沿着基因对于启动转录和完成转录非常重要
周期在经典的转录控制模型中,当被Rho或Ras GTP酶激活时,MAP
激酶级联激活与基因特异性顺式元件结合的转录因子,并帮助募集Pol II,
核心启动子相比之下,在捷径模型中,Rho GT3信号直接靶向Pol II CTD,
Ser 2和Ser 5磷酸化,从而可以迅速引起大规模的基因表达变化。我们
现在有初步的证据表明,ROP 2 GT3的活性,这是植物特有的成员,
Rho GTP酶的ROP亚家族以及CTD Ser 2和Ser 5磷酸化水平受S状态影响。
此外,SULTR 1;2突变体中的ROP GTPase活性更高。因此,我们假设ROP 2及其
功能冗余的ROP 4在SULTR 1;2介导的S传感和信号传导中起负调节剂的作用。的
建议的工作旨在填补从SULTR 1;2到Pol II转录的主要空白。具体来说,目标1是测试
ROP 2和ROP 4 GTP酶在SULTR 1;2介导的S感受和信号传导中起负调节剂的作用
使用遗传学和生物化学方法。目的2是检验ROP 2介导的Pol II捷径
S响应需要模型。在目的3中,我们提出测试ROP 2控制的SLIM 1转录因子,
活性和ROP 2介导的Pol II CTD编码调节协同作用,
S-缺陷诱导的S-反应基因的转录。这项研究不仅会带来新的
植物如何利用营养素转运体SULTR 1;2和ROP信号转导开关,以有效地
控制基因表达,而且还为其他生物体中的转录调节提供范例。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ZHI-LIANG ZHENG其他文献
ZHI-LIANG ZHENG的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ZHI-LIANG ZHENG', 18)}}的其他基金
Role of ROP GTPases in sulfate transceptor SULTR1;2-regulated sulfur nutrient sensing
ROP GTPases 在硫酸盐受体 SULTR1;2 调节的硫营养物传感中的作用
- 批准号:
10666554 - 财政年份:2022
- 资助金额:
$ 14.54万 - 项目类别:
Dissecting ROP Small GTPase Signaling in Carbon and Nitrogen Ratio Responses
剖析碳氮比响应中的 ROP 小 GTP 酶信号传导
- 批准号:
6820413 - 财政年份:2004
- 资助金额:
$ 14.54万 - 项目类别:
相似海外基金
Double Incorporation of Non-Canonical Amino Acids in an Animal and its Application for Precise and Independent Optical Control of Two Target Genes
动物体内非规范氨基酸的双重掺入及其在两个靶基因精确独立光学控制中的应用
- 批准号:
BB/Y006380/1 - 财政年份:2024
- 资助金额:
$ 14.54万 - 项目类别:
Research Grant
Quantifying L-amino acids in Ryugu to constrain the source of L-amino acids in life on Earth
量化 Ryugu 中的 L-氨基酸以限制地球生命中 L-氨基酸的来源
- 批准号:
24K17112 - 财政年份:2024
- 资助金额:
$ 14.54万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Collaborative Research: RUI: Elucidating Design Rules for non-NRPS Incorporation of Amino Acids on Polyketide Scaffolds
合作研究:RUI:阐明聚酮化合物支架上非 NRPS 氨基酸掺入的设计规则
- 批准号:
2300890 - 财政年份:2023
- 资助金额:
$ 14.54万 - 项目类别:
Continuing Grant
Basic research toward therapeutic strategies for stress-induced chronic pain with non-natural amino acids
非天然氨基酸治疗应激性慢性疼痛策略的基础研究
- 批准号:
23K06918 - 财政年份:2023
- 资助金额:
$ 14.54万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Molecular mechanisms how arrestins that modulate localization of glucose transporters are phosphorylated in response to amino acids
调节葡萄糖转运蛋白定位的抑制蛋白如何响应氨基酸而被磷酸化的分子机制
- 批准号:
23K05758 - 财政年份:2023
- 资助金额:
$ 14.54万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Molecular recognition and enantioselective reaction of amino acids
氨基酸的分子识别和对映选择性反应
- 批准号:
23K04668 - 财政年份:2023
- 资助金额:
$ 14.54万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Design and Synthesis of Fluorescent Amino Acids: Novel Tools for Biological Imaging
荧光氨基酸的设计与合成:生物成像的新工具
- 批准号:
2888395 - 财政年份:2023
- 资助金额:
$ 14.54万 - 项目类别:
Studentship
Structurally engineered N-acyl amino acids for the treatment of NASH
用于治疗 NASH 的结构工程 N-酰基氨基酸
- 批准号:
10761044 - 财政年份:2023
- 资助金额:
$ 14.54万 - 项目类别:
Lifestyle, branched-chain amino acids, and cardiovascular risk factors: a randomized trial
生活方式、支链氨基酸和心血管危险因素:一项随机试验
- 批准号:
10728925 - 财政年份:2023
- 资助金额:
$ 14.54万 - 项目类别:
Single-molecule protein sequencing by barcoding of N-terminal amino acids
通过 N 端氨基酸条形码进行单分子蛋白质测序
- 批准号:
10757309 - 财政年份:2023
- 资助金额:
$ 14.54万 - 项目类别: