Mechanism of Resistance Avoidance in Synthetically Evolved Antibacterial Peptides

合成进化抗菌肽避免耐药性的机制

基本信息

  • 批准号:
    10412134
  • 负责人:
  • 金额:
    $ 22.8万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-06-01 至 2024-05-31
  • 项目状态:
    已结题

项目摘要

Summary In the ongoing fight against drug resistant bacterial infections it will be critical to identify novel antibiotic chemotypes that are less likely to induce resistance. We have used synthetic molecular evolution (SME), iterative library design and screening, to identify novel antimicrobial peptides that have potent broad-spectrum sterilizing activity against all ESKAPE pathogens tested, including drug-resistant and biofilm-forming pathogens, in vitro and in vivo. These peptides are highly soluble, protease resistant, have low cytotoxicity, and are active in the presence of concentrated host cells and/or serum proteins. Most importantly, they do not induce resistance in P. aeruginosa under conditions that rapidly enable development of resistance to conventional antibiotics and some AMPs. Resistance to some other AMPs has been reported, and it has been experimentally selected. However, avoidance or delay in resistance to AMPs have also been reported. Here we seek to understand the mechanism of resistance-avoidance. The most commonly observed AMP resistance mechanism, by far, is the modification of Lipid A phosphates with cationic moieties, which dramatically reduces the potential for AMP interactions with the outer membrane(OM). We have previously shown that some AMPs bind strongly and accumulate significantly on OM LPS. In this work we will test the hypothesis that peptides requiring large scale accumulation on the outer membrane LPS, including Lipid A, before they can cross it will be able to drive selection for resistance using this mechanism. AMPs that can bypass the OM to reach the inner membrane target without requiring large scale accumulation on the OM will be slower or unable to elicit resistance. To test this hypothesis, we have identified two related AMPs, one that rapidly invokes resistance in Pseudomonas aeruginosa, and one that does not invoke any resistance at all in multiple passages under the same conditions. We will use these two peptides, and others, to study resistance and resistance-avoidance mechanisms in P. aeruginosa and other Gram-negative bacteria using i) direct measurements of AMP-bacteria binding, ii) genetic assessment of resistance pathways, iii) direct assessment of Lipid A modifications. We will also test for resistance avoidance in a panel of other Gram-negative pathogens to test for the generality of the mechanism.
摘要 在正在进行的对抗耐药细菌感染的斗争中,确定新的抗生素将是至关重要的 不太可能引起耐药性的化学类型。我们使用了合成分子进化(SME),迭代 文库设计和筛选,寻找具有广谱杀菌作用的新型抗菌肽 体外对所有测试的ESKAPE病原体,包括耐药病原体和生物被膜病原体的活性 在活体内。这些多肽高度溶解,耐酶,细胞毒性低,并具有活性。 存在浓缩的宿主细胞和/或血清蛋白。最重要的是,它们不会在P. 铜绿假单胞菌在迅速对常规抗生素和某些 安培。已经报道了对其他一些AMP的抗性,并已在实验中选择了它。然而, 也有报告称,避免或推迟了对AMPS的耐药性。在这里,我们试图了解这一机制 抵抗--避免。到目前为止,最常见的AMP抗性机制是修饰 含有阳离子部分的磷脂A,这极大地降低了AMP与 外膜(OM)。我们以前已经证明,一些AMP强烈结合并积累 在OM和LPS上有显著差异。在这项工作中,我们将检验需要大规模积累的多肽的假设 在外膜上,包括脂类A在内的脂蛋白,在它们能穿过它之前,就能驱动它进行选择 使用这种机制的抵抗力。可以绕过OM到达内膜靶的放大器,而无需 需要在OM上大规模积累的速度将较慢或无法引起抗性。为了检验这一假设, 我们已经确定了两个相关的AMP,一个能迅速在铜绿假单胞菌中引发耐药性,另一个 这根本不会在相同条件下的多个通道中引发任何阻力。我们将使用这两个 等,以研究铜绿假单胞菌和其他细菌的耐药性和耐药性避免机制 利用I)直接测定AMP与细菌结合的革兰氏阴性细菌,II)遗传评估 耐药途径,iii)直接评估脂类A的修饰。我们还将测试抗性避免在 一组其他革兰氏阴性病原体,以测试其机制的一般性。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
How We Came to Understand the "Tumultuous Chemical Heterogeneity" of the Lipid Bilayer Membrane.
Applications and evolution of melittin, the quintessential membrane active peptide.
  • DOI:
    10.1016/j.bcp.2021.114769
  • 发表时间:
    2021-11
  • 期刊:
  • 影响因子:
    5.8
  • 作者:
    Guha, Shantanu;Ferrie, Ryan P.;Ghimire, Jenisha;Ventura, Cristina R.;Wu, Eric;Sun, Leisheng;Kim, Sarah Y.;Wiedman, Gregory R.;Hristova, Kalina;Wimley, Wimley C.
  • 通讯作者:
    Wimley, Wimley C.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

WILLIAM C WIMLEY其他文献

WILLIAM C WIMLEY的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('WILLIAM C WIMLEY', 18)}}的其他基金

Structure and Function of Direct Delivery Peptides
直接递送肽的结构和功能
  • 批准号:
    10717736
  • 财政年份:
    2023
  • 资助金额:
    $ 22.8万
  • 项目类别:
Mechanism of Resistance Avoidance in Synthetically Evolved Antibacterial Peptides
合成进化抗菌肽避免耐药性的机制
  • 批准号:
    10308818
  • 财政年份:
    2021
  • 资助金额:
    $ 22.8万
  • 项目类别:
Spontaneous Membrane Translocating Peptides
自发膜转位肽
  • 批准号:
    9536104
  • 财政年份:
    2016
  • 资助金额:
    $ 22.8万
  • 项目类别:
Spontaneous Membrane Translocating Peptides
自发膜转位肽
  • 批准号:
    9173140
  • 财政年份:
    2016
  • 资助金额:
    $ 22.8万
  • 项目类别:
Spontaneous Membrane Translocating Peptides
自发膜转位肽
  • 批准号:
    9352353
  • 财政年份:
    2016
  • 资助金额:
    $ 22.8万
  • 项目类别:
Folding and Design of Beta Sheets in Membranes
膜中β片的折叠和设计
  • 批准号:
    7715396
  • 财政年份:
    2001
  • 资助金额:
    $ 22.8万
  • 项目类别:
Folding and Design of Beta Sheets in Membranes
膜中β片的折叠和设计
  • 批准号:
    7759198
  • 财政年份:
    2001
  • 资助金额:
    $ 22.8万
  • 项目类别:
Folding and design of beta sheets in membranes
膜中β片层的折叠和设计
  • 批准号:
    7222821
  • 财政年份:
    2001
  • 资助金额:
    $ 22.8万
  • 项目类别:
Folding and design of beta sheets in membranes
膜中β片层的折叠和设计
  • 批准号:
    7253522
  • 财政年份:
    2001
  • 资助金额:
    $ 22.8万
  • 项目类别:
Folding and design of beta sheets in membranes
膜中β片层的折叠和设计
  • 批准号:
    6724888
  • 财政年份:
    2001
  • 资助金额:
    $ 22.8万
  • 项目类别:

相似海外基金

SBIR Phase II: Development of a urine dipstick test that can guide immediate and appropriate antibiotic therapy for treatment of complicated urinary tract infections
SBIR II 期:开发尿液试纸测试,可以指导复杂尿路感染的立即和适当的抗生素治疗
  • 批准号:
    2213034
  • 财政年份:
    2023
  • 资助金额:
    $ 22.8万
  • 项目类别:
    Cooperative Agreement
Personalized Antibiotic Therapy in the Emergency Department: PANTHER Trial
急诊科的个性化抗生素治疗:PANTHER 试验
  • 批准号:
    10645528
  • 财政年份:
    2023
  • 资助金额:
    $ 22.8万
  • 项目类别:
Strategies for improving the efficacy of combinatorial antibiotic therapy in chronic infections
提高慢性感染联合抗生素治疗疗效的策略
  • 批准号:
    10736285
  • 财政年份:
    2023
  • 资助金额:
    $ 22.8万
  • 项目类别:
A Novel Bone Targeted Antibiotic Therapy for the Treatment of Infected Fractures
一种治疗感染性骨折的新型骨靶向抗生素疗法
  • 批准号:
    10603486
  • 财政年份:
    2023
  • 资助金额:
    $ 22.8万
  • 项目类别:
Severe Cutaneous Adverse Reactions Following Outpatient Antibiotic Therapy: A Population-based Study
门诊抗生素治疗后的严重皮肤不良反应:一项基于人群的研究
  • 批准号:
    449379
  • 财政年份:
    2020
  • 资助金额:
    $ 22.8万
  • 项目类别:
    Studentship Programs
Sex-Specific Differences in End-of-Life Burdensome Interventions and Antibiotic Therapy in Nursing Home Residents With Advanced Dementia
患有晚期痴呆症的疗养院居民的临终干预和抗生素治疗的性别差异
  • 批准号:
    422034
  • 财政年份:
    2020
  • 资助金额:
    $ 22.8万
  • 项目类别:
Optimizing outpatient parenteral antibiotic therapy to support hospital-in-the-home program across the unique environmental conditions of Australia
优化门诊肠外抗生素治疗,以支持澳大利亚独特环境条件下的家庭医院计划
  • 批准号:
    nhmrc : 1197866
  • 财政年份:
    2020
  • 资助金额:
    $ 22.8万
  • 项目类别:
    Investigator Grants
Resistance evolution in the presence of combination antibiotic therapy
联合抗生素治疗下耐药性的演变
  • 批准号:
    2241853
  • 财政年份:
    2019
  • 资助金额:
    $ 22.8万
  • 项目类别:
    Studentship
Host-pathogen interactions in antibiotic therapy for listeriosis
李斯特菌病抗生素治疗中宿主与病原体的相互作用
  • 批准号:
    18K07106
  • 财政年份:
    2018
  • 资助金额:
    $ 22.8万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Multipurpose targeted nano-antibiotic therapy to fight tough infection in bones
多用途靶向纳米抗生素疗法可对抗骨骼中的严重感染
  • 批准号:
    9788269
  • 财政年份:
    2018
  • 资助金额:
    $ 22.8万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了