Mechanism of Resistance Avoidance in Synthetically Evolved Antibacterial Peptides

合成进化抗菌肽避免耐药性的机制

基本信息

  • 批准号:
    10412134
  • 负责人:
  • 金额:
    $ 22.8万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-06-01 至 2024-05-31
  • 项目状态:
    已结题

项目摘要

Summary In the ongoing fight against drug resistant bacterial infections it will be critical to identify novel antibiotic chemotypes that are less likely to induce resistance. We have used synthetic molecular evolution (SME), iterative library design and screening, to identify novel antimicrobial peptides that have potent broad-spectrum sterilizing activity against all ESKAPE pathogens tested, including drug-resistant and biofilm-forming pathogens, in vitro and in vivo. These peptides are highly soluble, protease resistant, have low cytotoxicity, and are active in the presence of concentrated host cells and/or serum proteins. Most importantly, they do not induce resistance in P. aeruginosa under conditions that rapidly enable development of resistance to conventional antibiotics and some AMPs. Resistance to some other AMPs has been reported, and it has been experimentally selected. However, avoidance or delay in resistance to AMPs have also been reported. Here we seek to understand the mechanism of resistance-avoidance. The most commonly observed AMP resistance mechanism, by far, is the modification of Lipid A phosphates with cationic moieties, which dramatically reduces the potential for AMP interactions with the outer membrane(OM). We have previously shown that some AMPs bind strongly and accumulate significantly on OM LPS. In this work we will test the hypothesis that peptides requiring large scale accumulation on the outer membrane LPS, including Lipid A, before they can cross it will be able to drive selection for resistance using this mechanism. AMPs that can bypass the OM to reach the inner membrane target without requiring large scale accumulation on the OM will be slower or unable to elicit resistance. To test this hypothesis, we have identified two related AMPs, one that rapidly invokes resistance in Pseudomonas aeruginosa, and one that does not invoke any resistance at all in multiple passages under the same conditions. We will use these two peptides, and others, to study resistance and resistance-avoidance mechanisms in P. aeruginosa and other Gram-negative bacteria using i) direct measurements of AMP-bacteria binding, ii) genetic assessment of resistance pathways, iii) direct assessment of Lipid A modifications. We will also test for resistance avoidance in a panel of other Gram-negative pathogens to test for the generality of the mechanism.
概括 在持续反抗耐药细菌感染的斗争中,鉴定新型抗生素至关重要 化学型不太可能引起抗性。我们使用了合成分子进化(SME),迭代 图书馆的设计和筛选,以识别具有有效宽光谱灭菌的新型抗菌肽 对所有测试的Eskape病原体的活性,包括耐药性和生物膜形成病原体,体外 和体内。这些肽是高度溶的,抗蛋白酶的,具有低细胞毒性,并且在 浓缩宿主细胞和/或血清蛋白的存在。最重要的是,它们不会在P中引起抗性。 在迅速增强对常规抗生素的耐药性和一些条件下的条件下 放大器。已经报道了对其他放大器的耐药性,并已通过实验选择。然而, 还报告了避免或延迟对AMP的阻力。在这里,我们试图了解机制 避免阻力。到目前为止,最常见的AMP电阻机制是修饰 具有阳离子部分的脂质A磷酸盐的磷酸盐,这大大降低了与AMP相互作用的潜力 外膜(OM)。我们以前已经表明,某些AMP绑定很强并积累 在OM LP上显着。在这项工作中,我们将测试需要大规模积累的肽的假设 在外膜LPS(包括脂质A)上 使用这种机制的阻力。可以绕过OM以无需绕过OM即可到达内膜目标的放大器 在OM上需要大规模积累将较慢或无法引起阻力。为了检验这一假设, 我们已经确定了两个相关的放大器,一个放大器迅速引起铜绿假单胞菌的抗性,一个 在相同条件下,这在多个段落中根本没有任何阻力。我们将使用这两个 肽和其他肽,用于研究铜绿假单胞菌和其他的耐药性和抗抗性机制 使用i)直接测量AMP - 细菌结合的革兰氏阴性细菌,ii)遗传评估 电阻途径,iii)直接评估脂质A修饰。我们还将测试避免抵抗的 一组其他革兰氏阴性病原体,以测试机制的通用性。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
How We Came to Understand the "Tumultuous Chemical Heterogeneity" of the Lipid Bilayer Membrane.
Applications and evolution of melittin, the quintessential membrane active peptide.
  • DOI:
    10.1016/j.bcp.2021.114769
  • 发表时间:
    2021-11
  • 期刊:
  • 影响因子:
    5.8
  • 作者:
    Guha, Shantanu;Ferrie, Ryan P.;Ghimire, Jenisha;Ventura, Cristina R.;Wu, Eric;Sun, Leisheng;Kim, Sarah Y.;Wiedman, Gregory R.;Hristova, Kalina;Wimley, Wimley C.
  • 通讯作者:
    Wimley, Wimley C.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

WILLIAM C WIMLEY其他文献

WILLIAM C WIMLEY的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('WILLIAM C WIMLEY', 18)}}的其他基金

Structure and Function of Direct Delivery Peptides
直接递送肽的结构和功能
  • 批准号:
    10717736
  • 财政年份:
    2023
  • 资助金额:
    $ 22.8万
  • 项目类别:
Mechanism of Resistance Avoidance in Synthetically Evolved Antibacterial Peptides
合成进化抗菌肽避免耐药性的机制
  • 批准号:
    10308818
  • 财政年份:
    2021
  • 资助金额:
    $ 22.8万
  • 项目类别:
Spontaneous Membrane Translocating Peptides
自发膜转位肽
  • 批准号:
    9536104
  • 财政年份:
    2016
  • 资助金额:
    $ 22.8万
  • 项目类别:
Spontaneous Membrane Translocating Peptides
自发膜转位肽
  • 批准号:
    9173140
  • 财政年份:
    2016
  • 资助金额:
    $ 22.8万
  • 项目类别:
Spontaneous Membrane Translocating Peptides
自发膜转位肽
  • 批准号:
    9352353
  • 财政年份:
    2016
  • 资助金额:
    $ 22.8万
  • 项目类别:
Folding and Design of Beta Sheets in Membranes
膜中β片的折叠和设计
  • 批准号:
    7759198
  • 财政年份:
    2001
  • 资助金额:
    $ 22.8万
  • 项目类别:
Folding and Design of Beta Sheets in Membranes
膜中β片的折叠和设计
  • 批准号:
    7715396
  • 财政年份:
    2001
  • 资助金额:
    $ 22.8万
  • 项目类别:
Folding and design of beta sheets in membranes
膜中β片层的折叠和设计
  • 批准号:
    7222821
  • 财政年份:
    2001
  • 资助金额:
    $ 22.8万
  • 项目类别:
Folding and design of beta sheets in membranes
膜中β片层的折叠和设计
  • 批准号:
    7253522
  • 财政年份:
    2001
  • 资助金额:
    $ 22.8万
  • 项目类别:
Folding and design of beta sheets in membranes
膜中β片层的折叠和设计
  • 批准号:
    6724888
  • 财政年份:
    2001
  • 资助金额:
    $ 22.8万
  • 项目类别:

相似海外基金

Thiazolino-Pyridone Compounds as Novel Drugs for Tuberculosis
噻唑啉-吡啶酮化合物作为结核病新药
  • 批准号:
    10698829
  • 财政年份:
    2023
  • 资助金额:
    $ 22.8万
  • 项目类别:
Disrupting Dogma: Investigating LPS Biosynthesis Inhibition as an Alternative Mechanism of Action of Aminoglycoside Antibiotics
颠覆教条:研究 LPS 生物合成抑制作为氨基糖苷类抗生素的替代作用机制
  • 批准号:
    10653587
  • 财政年份:
    2023
  • 资助金额:
    $ 22.8万
  • 项目类别:
Development of Targeted Antipseudomonal Bactericidal Prodrugs
靶向抗假单胞菌杀菌前药的开发
  • 批准号:
    10678074
  • 财政年份:
    2023
  • 资助金额:
    $ 22.8万
  • 项目类别:
Clinical decision support algorithm to optimize management of respiratory tract infection in children attending primary health facilities in Kilimanjaro Region, Tanzania
用于优化坦桑尼亚乞力马扎罗地区初级卫生机构儿童呼吸道感染管理的临床决策支持算法
  • 批准号:
    10734148
  • 财政年份:
    2023
  • 资助金额:
    $ 22.8万
  • 项目类别:
FimH-Targeting Antibody-Recruiting Molecules as Novel Drugs for Preventing Complicated Urinary Tract Infections
FimH 靶向抗体招募分子作为预防复杂性尿路感染的新药
  • 批准号:
    10603693
  • 财政年份:
    2023
  • 资助金额:
    $ 22.8万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了