Precision Functional Neuroimaging Core
精密功能神经影像核心
基本信息
- 批准号:10411713
- 负责人:
- 金额:$ 35.33万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-06-01 至 2027-01-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAnatomyAreaAwardBehaviorCerebral cortexClinicalComputer ModelsCorpus striatum structureDataDecision MakingDictionaryFunctional Magnetic Resonance ImagingFundingGoalsGrainHumanImpairmentIndividualInsula of ReilMachine LearningMapsMeasuresMeta-AnalysisMethodsNetwork-basedNeuronsNoiseParticipantPatternPositioning AttributePropertyProtocols documentationPublishingRestShapesSignal TransductionTechniquesTechnologyTestingTherapeutic EffectWorkadvanced analyticsassociation cortexbasebehavioral impairmentdenoisingexperimental studyflexibilityimprovedinnovationinter-individual variationneural circuitneural correlateneuroimagingnonhuman primatenovelresponse
项目摘要
Abstract: Functional neuroimaging experiments utilizing both resting state fMRI and task-based fMRI are
proposed by individual projects across the Center, to accurately characterize the OCDnet. Given the
substantial inter-individual variability of the OCDnet, these projects require advanced analytical approaches
that can reliably and accurately map the OCD nodes in each participant. The central goal of the present core is
to support these projects in acquiring and analyzing functional neuroimaging data using the cutting-edge
techniques to achieve subject-level precision. Aim 1: The core will develop and implement individualized
targeting strategies to identify homologous, subject-specific regions and networks based on resting-state fMRI.
We will use a “maximizing between-subject homology” strategy and parcellate each subject's cerebral cortex
into very fine-grained functional clusters, each of which may consist of a single region or of several discrete
regions. We will also identify homologous hub regions in humans based on connectivity patterns observed in
non-human primates (NHPs). Aim 2: The core will develop and implement highly innovative denoising
technologies that will dramatically improve the SNR of both task-based fMRI and resting state fMRI data. The
denoising technology will be key to obtaining reliable task-induced functional responses not only at the
individual subject level but also at the single trial level. Aim 3: The core will assist projects in continuing to
implement the advanced functional MRI neuroimaging protocols developed during the previous funding
period, that maximize within-individual signal properties and minimize anatomical distortion.
翻译后摘要:利用静息状态fMRI和基于任务的fMRI功能神经成像实验,
由整个中心的各个项目提出,以准确地描述OCDnet的特征。鉴于
OCDnet的个体间差异很大,这些项目需要先进的分析方法
可以可靠和准确地映射每个参与者中的OCD节点。本核心的中心目标是
支持这些项目,使用最先进的神经成像技术获取和分析功能性神经成像数据,
技术,以达到主题级精度。目标1:核心将开发和实施个性化
靶向策略,以确定同源的,主题特定的区域和网络的基础上休息状态功能磁共振成像。
我们将使用“最大化受试者之间的同源性”的策略,
分成非常细粒度的功能簇,每个功能簇可以由单个区域或几个离散的区域组成,
地区我们还将根据在基因组中观察到的连接模式来识别人类中的同源枢纽区域。
非人类灵长类动物(NHP)。目标2:核心将开发和实施高度创新的去噪
这些技术将极大地提高基于任务的功能磁共振成像和静息状态功能磁共振成像数据的信噪比。的
去噪技术将是获得可靠的任务诱导功能反应的关键,不仅在
个体受试者水平,但也在单一试验水平。目标3:核心将协助项目继续
实施在以前的资助期间开发的高级功能性MRI神经成像协议
周期,最大化个体内信号特性并最小化解剖失真。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Danhong Wang其他文献
Danhong Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Danhong Wang', 18)}}的其他基金
Understanding Functional Connectivity Abnormalities In Individual Patients with Psychosis
了解精神病个体患者的功能连接异常
- 批准号:
9974565 - 财政年份:2017
- 资助金额:
$ 35.33万 - 项目类别:
Understanding Functional Connectivity Abnormalities In Individual Patients with Psychosis
了解精神病个体患者的功能连接异常
- 批准号:
10213601 - 财政年份:2017
- 资助金额:
$ 35.33万 - 项目类别:
相似海外基金
Linking Epidermis and Mesophyll Signalling. Anatomy and Impact in Photosynthesis.
连接表皮和叶肉信号传导。
- 批准号:
EP/Z000882/1 - 财政年份:2024
- 资助金额:
$ 35.33万 - 项目类别:
Fellowship
Digging Deeper with AI: Canada-UK-US Partnership for Next-generation Plant Root Anatomy Segmentation
利用人工智能进行更深入的挖掘:加拿大、英国、美国合作开发下一代植物根部解剖分割
- 批准号:
BB/Y513908/1 - 财政年份:2024
- 资助金额:
$ 35.33万 - 项目类别:
Research Grant
Simultaneous development of direct-view and video laryngoscopes based on the anatomy and physiology of the newborn
根据新生儿解剖生理同步开发直视喉镜和视频喉镜
- 批准号:
23K11917 - 财政年份:2023
- 资助金额:
$ 35.33万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Genetics of Extreme Phenotypes of OSA and Associated Upper Airway Anatomy
OSA 极端表型的遗传学及相关上呼吸道解剖学
- 批准号:
10555809 - 财政年份:2023
- 资助金额:
$ 35.33万 - 项目类别:
computational models and analysis of the retinal anatomy and potentially physiology
视网膜解剖学和潜在生理学的计算模型和分析
- 批准号:
2825967 - 财政年份:2023
- 资助金额:
$ 35.33万 - 项目类别:
Studentship
Computational comparative anatomy: Translating between species in neuroscience
计算比较解剖学:神经科学中物种之间的翻译
- 批准号:
BB/X013227/1 - 财政年份:2023
- 资助金额:
$ 35.33万 - 项目类别:
Research Grant
Doctoral Dissertation Research: Social and ecological influences on brain anatomy
博士论文研究:社会和生态对大脑解剖学的影响
- 批准号:
2235348 - 财政年份:2023
- 资助金额:
$ 35.33万 - 项目类别:
Standard Grant
Development of a novel visualization, labeling, communication and tracking engine for human anatomy.
开发一种新颖的人体解剖学可视化、标签、通信和跟踪引擎。
- 批准号:
10761060 - 财政年份:2023
- 资助金额:
$ 35.33万 - 项目类别:
Understanding the functional anatomy of nociceptive spinal output neurons
了解伤害性脊髓输出神经元的功能解剖结构
- 批准号:
10751126 - 财政年份:2023
- 资助金额:
$ 35.33万 - 项目类别:
The Anatomy of Online Reviews: Evidence from the Steam Store
在线评论剖析:来自 Steam 商店的证据
- 批准号:
2872725 - 财政年份:2023
- 资助金额:
$ 35.33万 - 项目类别:
Studentship