Predictive Computational Models of Olfactory Networks
嗅觉网络的预测计算模型
基本信息
- 批准号:10413210
- 负责人:
- 金额:$ 29.33万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-01 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAddressAfferent NeuronsAlgorithmsArchitectureBiologicalBrainCellular StructuresCodeCollaborationsColorColor PerceptionColor VisionsComputer ModelsDataData SetDatabasesDimensionsEyeGoalsHumanKnowledgeLearningLightMachine LearningMathematicsMethodsModalityModelingMolecularNatureNeural Network SimulationNeuronsNeurosciencesNoiseOdorant ReceptorsOdorsOlfactory PathwaysPerceptionProcessPropertyPsychological reinforcementPublicationsReportingResponse to stimulus physiologyRetinal ConeRouteSensorySmell PerceptionSourceSpace ModelsStimulusStructureSynapsesSystemTestingTheoretical StudiesTrainingVariantVisual system structureWeightWorkartificial neural networkbasecell typecohortcomputational network modelingdata spaceexperimental groupexperimental studyhigh dimensionalityinsightnetwork architecturenetwork modelsnovelolfactory receptorolfactory stimulusperformance testspiriform cortexpredictive modelingprogramsreceptorrelating to nervous systemresponsetheories
项目摘要
SUMMARY (Project 5)
The nature of perceptual objects and of the neuronal mechanisms leading to their representation in the brain is
one of the fundamental questions in neuroscience. Do representations of perceptual objects populate spaces
of low dimensionality or do they mirror the complexity of the stimulus space? What features of the stimulus are
represented by the dimensions of the perceptual space? How can objects represented in the brain retain
invariance with respect to variations in stimulus features, timing, and background?
Despite substantial progress in our understanding of the molecular basis of the sense of smell, for the
olfactory system, these questions remain unanswered. In the eye, for example, the responses of the three
types of cone photoreceptors correspond to the three dimensions sensed by human color vision.
Understanding the low dimensional nature of color space was fundamental to our understanding of color
vision. In the olfactory system, a similar conceptual understanding is missing.
This project is a part of synergistic effort to understand the nature of olfactory coding. Based on
experimental datasets collected by other projects of the same U19 program as well as publically available
datasets, we will study the structure of the spaces of olfactory stimuli, responses of olfactory neurons, and
perceptual qualities, build a neural network model that establishes connections between spaces, and resolve
conceptual questions to make this network biologically realistic. Using state-of-the-art machine learning
approaches, we will generate a predictive computational model of the olfactory system as a deliverable.
Our goal is to develop, implement in a computational model, and test at least two theoretical ideas about
the nature of olfactory code. First, we will test the hypothesis that olfactory spaces contain substantially fewer
dimensions than the number of types of odorant receptors (OR). Our preliminary data indicates that the
number of principal dimensions may be as low at 10, compared to ~103 of OR types. We will define these
dimensions mathematically and relate them to the molecular properties of odorants. Second, we will test the
primacy coding hypothesis, according to which identities of a small cohort of the most sensitive olfactory
receptor types represent odorant identity in a concentration-invariant manner. Such representations render
odor objects robust to noise. Our computational/theoretical studies will be carried out in close collaboration with
the experimental groups. Our project includes three Specific Aims: Aim 1: To build predictive computational
models for spaces of olfactory stimuli, responses, and percepts; Aim 2: To develop a predictive network model
for mapping between olfactory spaces; and Aim 3: To build biologically realistic models of olfactory networks.
Since representation of sensory objects is a fundamental problem in neuroscience, mathematical principles
uncovered by our studies will elucidate the principles of sensory representation in other sensory modalities.
摘要(项目5)
知觉对象的性质和导致其在大脑中表现的神经机制的性质是
神经科学中的基本问题之一。感知对象的表示是否填充在空间中
它们是低维的还是反映了刺激空间的复杂性?刺激的特点是什么?
由感知空间的维度所代表?大脑中呈现的物体是如何保持的
关于刺激特征、时间和背景变化的不变性?
尽管我们对嗅觉的分子基础的理解取得了实质性的进展,但对于
嗅觉系统,这些问题仍然没有答案。例如,在眼睛里,三个人的反应
视锥感光器的类型与人类色觉感知的三维空间相对应。
理解颜色空间的低维性质是我们理解颜色的基础
幻象。在嗅觉系统中,类似的概念理解是缺失的。
这个项目是理解嗅觉编码本质的协同工作的一部分。基于
由同一U19计划的其他项目收集的实验数据集以及公开提供的数据
数据集,我们将研究嗅觉刺激空间的结构,嗅觉神经元的反应,以及
感知品质,建立一个在空间之间建立联系的神经网络模型,并解决
概念性的问题,使这个网络在生物学上具有真实性。使用最先进的机器学习
方法,我们将生成一个嗅觉系统的预测性计算模型作为交付。
我们的目标是开发、在计算模型中实现并测试至少两个关于
嗅觉编码的本质。首先,我们将检验这样一个假设,即嗅觉空间包含的空间要少得多
大小比气味感受器的类型(OR)的数量更多。我们的初步数据显示
与OR类型的约103个相比,主维度的数量可能低至10个。我们将对这些进行定义
并将它们与气味的分子特性联系起来。第二,我们将测试
首位编码假说,根据该假说,一小群最敏感的嗅觉的身份
受体类型以浓度不变的方式代表气味特性。这样的表示法呈现
气味物体对噪音有很强的抵抗力。我们的计算/理论研究将与
各试验组。我们的项目包括三个具体目标:目标1:构建预测计算
嗅觉刺激、反应和知觉空间的模型;目标2:开发预测网络模型
用于在嗅觉空间之间进行映射;以及目标3:建立生物上逼真的嗅觉网络模型。
由于感官对象的表征是神经科学中的一个基本问题,数学原理
我们的研究发现将阐明在其他感觉形式中感觉表征的原理。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ALEXEI KOULAKOV其他文献
ALEXEI KOULAKOV的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ALEXEI KOULAKOV', 18)}}的其他基金
CRCNS: Reward and motivation in neural networks
CRCNS:神经网络中的奖励和动机
- 批准号:
10455096 - 财政年份:2019
- 资助金额:
$ 29.33万 - 项目类别:
CRCNS: Reward and motivation in neural networks
CRCNS:神经网络中的奖励和动机
- 批准号:
10017031 - 财政年份:2019
- 资助金额:
$ 29.33万 - 项目类别:
Predictive Computational Models of Olfactory Networks
嗅觉网络的预测计算模型
- 批准号:
10200170 - 财政年份:2019
- 资助金额:
$ 29.33万 - 项目类别:
CRCNS: Reward and motivation in neural networks
CRCNS:神经网络中的奖励和动机
- 批准号:
9916069 - 财政年份:2019
- 资助金额:
$ 29.33万 - 项目类别:
CRCNS: Reward and motivation in neural networks
CRCNS:神经网络中的奖励和动机
- 批准号:
10227072 - 财政年份:2019
- 资助金额:
$ 29.33万 - 项目类别:
CRCNS: Reward and motivation in neural networks
CRCNS:神经网络中的奖励和动机
- 批准号:
10675602 - 财政年份:2019
- 资助金额:
$ 29.33万 - 项目类别:
Predictive Computational Models of Olfactory Networks
嗅觉网络的预测计算模型
- 批准号:
10670089 - 财政年份:2019
- 资助金额:
$ 29.33万 - 项目类别:
CRCNS: Sparse odor coding in the olfactory bulb
CRCNS:嗅球中的稀疏气味编码
- 批准号:
9066624 - 财政年份:2014
- 资助金额:
$ 29.33万 - 项目类别:
CRCNS: Sparse odor coding in the olfactory bulb
CRCNS:嗅球中的稀疏气味编码
- 批准号:
8837253 - 财政年份:2014
- 资助金额:
$ 29.33万 - 项目类别:
CRCNS: Theory and experiment of neural circuit mapping by DNA sequencing
CRCNS:DNA测序神经回路图谱的理论与实验
- 批准号:
9246516 - 财政年份:2013
- 资助金额:
$ 29.33万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 29.33万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 29.33万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 29.33万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 29.33万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 29.33万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 29.33万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 29.33万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 29.33万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 29.33万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 29.33万 - 项目类别:
Research Grant