Statistical Methods for Integration of Multiple Data Sources toward Precision Cancer Medicine

整合多个数据源以实现精准癌症医学的统计方法

基本信息

  • 批准号:
    10415744
  • 负责人:
  • 金额:
    $ 34.87万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-06-01 至 2027-05-31
  • 项目状态:
    未结题

项目摘要

Project Summary: The primary objective of this research is to develop novel statistical and computational tools to evaluate new and existing cancer therapies for precision cancer medicine, with a principal focus on integrating multiple data sources including randomized controlled trials (RCT) and real world data (RWD). All of the aims are motivated by multidisciplinary collaboration. Evidence-based clinical decision making involves synthesizing available research evidence from multiple resources, including RCT and RWD. Pivotal RCTs are the primary evidence that established the oncologic equivalence or efficacy of local and systemic treatments. However, a recent systematic review found little agreement between population-based RWD and RCTs when comparing the same oncologic treatment regimens. This difference is thought to stem from the highly selective criteria used for trial enrollment coupled with the rapidly changing nature of multidisciplinary cancer care. Moreover, heterogeneous treatment effects by disease biologic tumor subtype on survival outcomes has not been examined sufficiently in early RCTs. We will develop statistical tools and software to evaluate the agreement of findings from RCTs and the real-world patient population, reassessing standard treatment guidelines on local- regional therapies for early-stage breast cancer by patients’ clinical and tumor subtypes. While the proposed methodology is agnostic to disease type, we will use breast cancer patients as proof of principle for the approaches proposed. The specific aims are: (1) to estimate and assess the agreement of treatment efficacy on survival outcomes across multiple studies (e.g., RCT and RWD) using nonparametric calibration weights to adjust for treatment selection bias and heterogeneity between studies; (2) to test the existence of a subgroup of patients with enhanced treatment effect and predict subgroup membership of a treatment using a semi-parametric isotonic- Cox model, and to develop a concordance-assisted learning tool for threshold identification to guide patient treatment selection; (3) to infer the treatment effects on breast cancer-specific survival when the cause of death is unknown in RWD by integrating data from RCT and RWD; (4) to estimate treatment effect for rare subtypes of breast cancer by combining external aggregate data with individual-level data to improve inference efficiency; and (5) to develop and disseminate publicly available, user-friendly software and facilitate the reproducibility and applications of our methods to multiple existing databases, including large-population-level data and RCT data for breast cancer research. The proposed research will advance general methodologic development in comparative effectiveness and precision medicine research by efficiently integrating multiple data sources. More importantly, the study findings could improve evidence-based treatment recommendations, better informing clinicians to select optimal treatments according to patients’ tumor subtypes and other characteristics, thus furthering clinical care via better integration of clinical science.
项目总结:

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

JING NING其他文献

JING NING的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('JING NING', 18)}}的其他基金

Statistical Methods for Integration of Multiple Data Sources toward Precision Cancer Medicine
整合多个数据源以实现精准癌症医学的统计方法
  • 批准号:
    10632124
  • 财政年份:
    2022
  • 资助金额:
    $ 34.87万
  • 项目类别:
Comparative Effectiveness of Cancer Research: Use Data from Multiple Sources
癌症研究的比较有效性:使用多个来源的数据
  • 批准号:
    9027966
  • 财政年份:
    2016
  • 资助金额:
    $ 34.87万
  • 项目类别:
Comparative Effectiveness of Cancer Research: Use Data from Multiple Sources
癌症研究的比较有效性:使用多个来源的数据
  • 批准号:
    9263902
  • 财政年份:
    2016
  • 资助金额:
    $ 34.87万
  • 项目类别:
Statistical Methodology Development in Blood Transfusion Protocol Research
输血方案研究中统计方法的发展
  • 批准号:
    8700487
  • 财政年份:
    2013
  • 资助金额:
    $ 34.87万
  • 项目类别:
Statistical Methodology Development in Blood Transfusion Protocol Research
输血方案研究中统计方法的发展
  • 批准号:
    8445911
  • 财政年份:
    2013
  • 资助金额:
    $ 34.87万
  • 项目类别:

相似海外基金

AI-based prediction of the belepharoptosis etiologies by means of machine learning algorithmic analysis of length-tensile force chart of levator muscle
通过提上睑肌长度-拉力图的机器学习算法分析,基于人工智能的上睑下垂病因预测
  • 批准号:
    22K09863
  • 财政年份:
    2022
  • 资助金额:
    $ 34.87万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Algorithmic analysis of symmetric-key cryptographic primitives
对称密钥密码原语的算法分析
  • 批准号:
    262074-2008
  • 财政年份:
    2013
  • 资助金额:
    $ 34.87万
  • 项目类别:
    Discovery Grants Program - Individual
Algorithmic analysis of symmetric-key cryptographic primitives
对称密钥密码原语的算法分析
  • 批准号:
    262074-2008
  • 财政年份:
    2012
  • 资助金额:
    $ 34.87万
  • 项目类别:
    Discovery Grants Program - Individual
Algorithmic analysis of symmetric-key cryptographic primitives
对称密钥密码原语的算法分析
  • 批准号:
    262074-2008
  • 财政年份:
    2011
  • 资助金额:
    $ 34.87万
  • 项目类别:
    Discovery Grants Program - Individual
Unified Approach for Nanotechnology CAD/Computation by Algorithmic Analysis of Periodic Crystal Structures
通过周期性晶体结构的算法分析实现纳米技术 CAD/计算的统一方法
  • 批准号:
    22650002
  • 财政年份:
    2010
  • 资助金额:
    $ 34.87万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Algorithmic analysis of symmetric-key cryptographic primitives
对称密钥密码原语的算法分析
  • 批准号:
    262074-2008
  • 财政年份:
    2010
  • 资助金额:
    $ 34.87万
  • 项目类别:
    Discovery Grants Program - Individual
Algorithmic analysis of symmetric-key cryptographic primitives
对称密钥密码原语的算法分析
  • 批准号:
    262074-2008
  • 财政年份:
    2009
  • 资助金额:
    $ 34.87万
  • 项目类别:
    Discovery Grants Program - Individual
Algorithmic analysis of symmetric-key cryptographic primitives
对称密钥密码原语的算法分析
  • 批准号:
    262074-2008
  • 财政年份:
    2008
  • 资助金额:
    $ 34.87万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical & Algorithmic Analysis of Natural and Artificial DNA Sequences
数学
  • 批准号:
    0218568
  • 财政年份:
    2002
  • 资助金额:
    $ 34.87万
  • 项目类别:
    Standard Grant
Algorithmic Analysis and Congestion Control of Connection-Oriented Services in Large Scale Communication Networks.
大规模通信网络中面向连接的服务的算法分析和拥塞控制。
  • 批准号:
    9404947
  • 财政年份:
    1994
  • 资助金额:
    $ 34.87万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了