Statistical Methods for Integration of Multiple Data Sources toward Precision Cancer Medicine
整合多个数据源以实现精准癌症医学的统计方法
基本信息
- 批准号:10415744
- 负责人:
- 金额:$ 34.87万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-06-01 至 2027-05-31
- 项目状态:未结题
- 来源:
- 关键词:AgreementAlgorithmic AnalysisAlgorithmsBiologicalBreast Cancer PatientCalibrationCause of DeathCessation of lifeCharacteristicsClinicalClinical SciencesComparative Effectiveness ResearchComputer softwareConsumptionCoupledCox ModelsDataData AggregationData SourcesDatabasesDevelopmentDiseaseEarly treatmentEligibility DeterminationEnrollmentEquationEquilibriumEvidence based treatmentGoldHeterogeneityIndividualInterdisciplinary StudyIsotonic ExerciseKnowledgeLearningLinkMalignant NeoplasmsMeasuresMethodologyMethodsModelingModificationNatureOutcomePatient-Focused OutcomesPatientsPopulationPopulation StudyPopulation-Based RegistryPractice GuidelinesProbabilityRandomized Controlled TrialsRare DiseasesRecommendationReproducibilityResearchResourcesSelection BiasSelection for TreatmentsSourceStatistical MethodsStatistical ModelsSubgroupTestingTimeTreatment EfficacyTreatment ProtocolsTumor SubtypeVariantWeightanticancer researchbasecancer carecancer therapyclinical careclinical decision-makingclinical practiceclinical subtypescohortcomparative effectivenesscomputerized toolsdata registryevidence baseflexibilityhazardheterogenous dataimprovedindividual patientinsightmalignant breast neoplasmmethod developmentmultidisciplinarymultiple data sourcesneoplasm registrynoveloptimal treatmentspatient populationpatient subsetspopulation basedprecision medicineprecision oncologyprediction algorithmpublic health relevancesemiparametricstandard carestemsurvival outcomesystematic reviewtooltreatment armtreatment effecttreatment guidelinestumoruser friendly software
项目摘要
Project Summary:
The primary objective of this research is to develop novel statistical and computational tools to evaluate new
and existing cancer therapies for precision cancer medicine, with a principal focus on integrating multiple data
sources including randomized controlled trials (RCT) and real world data (RWD). All of the aims are motivated
by multidisciplinary collaboration. Evidence-based clinical decision making involves synthesizing available
research evidence from multiple resources, including RCT and RWD. Pivotal RCTs are the primary evidence
that established the oncologic equivalence or efficacy of local and systemic treatments. However, a recent
systematic review found little agreement between population-based RWD and RCTs when comparing the
same oncologic treatment regimens. This difference is thought to stem from the highly selective criteria used
for trial enrollment coupled with the rapidly changing nature of multidisciplinary cancer care. Moreover,
heterogeneous treatment effects by disease biologic tumor subtype on survival outcomes has not been
examined sufficiently in early RCTs. We will develop statistical tools and software to evaluate the agreement of
findings from RCTs and the real-world patient population, reassessing standard treatment guidelines on local-
regional therapies for early-stage breast cancer by patients’ clinical and tumor subtypes. While the proposed
methodology is agnostic to disease type, we will use breast cancer patients as proof of principle for the
approaches proposed.
The specific aims are: (1) to estimate and assess the agreement of treatment efficacy on survival outcomes
across multiple studies (e.g., RCT and RWD) using nonparametric calibration weights to adjust for treatment
selection bias and heterogeneity between studies; (2) to test the existence of a subgroup of patients with
enhanced treatment effect and predict subgroup membership of a treatment using a semi-parametric isotonic-
Cox model, and to develop a concordance-assisted learning tool for threshold identification to guide patient
treatment selection; (3) to infer the treatment effects on breast cancer-specific survival when the cause of
death is unknown in RWD by integrating data from RCT and RWD; (4) to estimate treatment effect for rare
subtypes of breast cancer by combining external aggregate data with individual-level data to improve inference
efficiency; and (5) to develop and disseminate publicly available, user-friendly software and facilitate the
reproducibility and applications of our methods to multiple existing databases, including large-population-level
data and RCT data for breast cancer research. The proposed research will advance general methodologic
development in comparative effectiveness and precision medicine research by efficiently integrating multiple
data sources. More importantly, the study findings could improve evidence-based treatment recommendations,
better informing clinicians to select optimal treatments according to patients’ tumor subtypes and other
characteristics, thus furthering clinical care via better integration of clinical science.
项目概要:
这项研究的主要目标是开发新的统计和计算工具,以评估新的
以及现有的癌症治疗方法,用于精准癌症医学,主要关注整合多种数据
来源包括随机对照试验(RCT)和真实的世界数据(RWD)。所有的目标都是
多学科合作。循证临床决策包括综合现有的
来自多个资源的研究证据,包括RCT和RWD。随机对照试验是主要证据
确定局部和全身治疗的肿瘤等效性或疗效。但最近的一项
系统性综述发现,当比较
相同的肿瘤治疗方案。这种差异被认为是源于所使用的高度选择性的标准
对于试验招募,再加上多学科癌症护理的快速变化的性质。此外,委员会认为,
疾病生物学肿瘤亚型对生存结局的异质性治疗效果尚未被
在早期的RCT中得到了充分的检验。我们将开发统计工具和软件,以评估
来自RCT和真实世界患者人群的结果,重新评估当地标准治疗指南,
根据患者的临床和肿瘤亚型对早期乳腺癌进行区域治疗。虽然拟议的
方法学对疾病类型是不可知的,我们将使用乳腺癌患者作为原则的证明,
提出的办法。
具体目标是:(1)估计和评估治疗效果对生存结局的一致性
在多个研究中(例如,RCT和RWD)使用非参数校准权重调整治疗
研究之间的选择偏倚和异质性;(2)检验是否存在一个亚组的患者,
增强的治疗效果,并使用半参数等渗-
考克斯模型,并开发一个一致性辅助学习工具的阈值识别,以指导患者
治疗选择;(3)当乳腺癌的病因
通过整合RCT和RWD的数据,RWD中的死亡未知;(4)估计罕见的治疗效果
通过将外部聚集数据与个体水平数据相结合来改进推断,
(5)开发和传播方便用户的公开软件,
我们的方法在多个现有数据库中的重现性和应用,包括大人口水平
乳腺癌研究的随机对照试验数据。该研究将推进一般方法学
通过有效整合多种药物,发展比较有效性和精准医学研究
数据源更重要的是,研究结果可以改善循证治疗建议,
更好地告知临床医生根据患者的肿瘤亚型和其他
因此,通过更好地整合临床科学来促进临床护理。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JING NING其他文献
JING NING的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JING NING', 18)}}的其他基金
Statistical Methods for Integration of Multiple Data Sources toward Precision Cancer Medicine
整合多个数据源以实现精准癌症医学的统计方法
- 批准号:
10632124 - 财政年份:2022
- 资助金额:
$ 34.87万 - 项目类别:
Comparative Effectiveness of Cancer Research: Use Data from Multiple Sources
癌症研究的比较有效性:使用多个来源的数据
- 批准号:
9027966 - 财政年份:2016
- 资助金额:
$ 34.87万 - 项目类别:
Comparative Effectiveness of Cancer Research: Use Data from Multiple Sources
癌症研究的比较有效性:使用多个来源的数据
- 批准号:
9263902 - 财政年份:2016
- 资助金额:
$ 34.87万 - 项目类别:
Statistical Methodology Development in Blood Transfusion Protocol Research
输血方案研究中统计方法的发展
- 批准号:
8700487 - 财政年份:2013
- 资助金额:
$ 34.87万 - 项目类别:
Statistical Methodology Development in Blood Transfusion Protocol Research
输血方案研究中统计方法的发展
- 批准号:
8445911 - 财政年份:2013
- 资助金额:
$ 34.87万 - 项目类别:
相似海外基金
AI-based prediction of the belepharoptosis etiologies by means of machine learning algorithmic analysis of length-tensile force chart of levator muscle
通过提上睑肌长度-拉力图的机器学习算法分析,基于人工智能的上睑下垂病因预测
- 批准号:
22K09863 - 财政年份:2022
- 资助金额:
$ 34.87万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Algorithmic analysis of symmetric-key cryptographic primitives
对称密钥密码原语的算法分析
- 批准号:
262074-2008 - 财政年份:2013
- 资助金额:
$ 34.87万 - 项目类别:
Discovery Grants Program - Individual
Algorithmic analysis of symmetric-key cryptographic primitives
对称密钥密码原语的算法分析
- 批准号:
262074-2008 - 财政年份:2012
- 资助金额:
$ 34.87万 - 项目类别:
Discovery Grants Program - Individual
Algorithmic analysis of symmetric-key cryptographic primitives
对称密钥密码原语的算法分析
- 批准号:
262074-2008 - 财政年份:2011
- 资助金额:
$ 34.87万 - 项目类别:
Discovery Grants Program - Individual
Unified Approach for Nanotechnology CAD/Computation by Algorithmic Analysis of Periodic Crystal Structures
通过周期性晶体结构的算法分析实现纳米技术 CAD/计算的统一方法
- 批准号:
22650002 - 财政年份:2010
- 资助金额:
$ 34.87万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Algorithmic analysis of symmetric-key cryptographic primitives
对称密钥密码原语的算法分析
- 批准号:
262074-2008 - 财政年份:2010
- 资助金额:
$ 34.87万 - 项目类别:
Discovery Grants Program - Individual
Algorithmic analysis of symmetric-key cryptographic primitives
对称密钥密码原语的算法分析
- 批准号:
262074-2008 - 财政年份:2009
- 资助金额:
$ 34.87万 - 项目类别:
Discovery Grants Program - Individual
Algorithmic analysis of symmetric-key cryptographic primitives
对称密钥密码原语的算法分析
- 批准号:
262074-2008 - 财政年份:2008
- 资助金额:
$ 34.87万 - 项目类别:
Discovery Grants Program - Individual
Mathematical & Algorithmic Analysis of Natural and Artificial DNA Sequences
数学
- 批准号:
0218568 - 财政年份:2002
- 资助金额:
$ 34.87万 - 项目类别:
Standard Grant
Algorithmic Analysis and Congestion Control of Connection-Oriented Services in Large Scale Communication Networks.
大规模通信网络中面向连接的服务的算法分析和拥塞控制。
- 批准号:
9404947 - 财政年份:1994
- 资助金额:
$ 34.87万 - 项目类别:
Standard Grant














{{item.name}}会员




