Statistical Methodology Development in Blood Transfusion Protocol Research
输血方案研究中统计方法的发展
基本信息
- 批准号:8445911
- 负责人:
- 金额:$ 23.07万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-07-15 至 2015-04-30
- 项目状态:已结题
- 来源:
- 关键词:Accident and Emergency departmentAddressAdmission activityAlgorithmsBlood Component TransfusionBlood PlateletsBlood TransfusionCessation of lifeClinicalClinical ResearchComplexDataData AnalysesData SetDevelopmentEarly InterventionEquilibriumErythrocyte TransfusionErythrocytesEventFutureGoldHemorrhageHemostatic functionHospital MortalityHourInjuryInterventionKnowledgeLifeLiteratureMeasuresMethodologyMethodsModelingNatureOperative Surgical ProceduresOutcomePatientsPerformancePlasmaPlatelet TransfusionProspective StudiesProtocols documentationRecurrenceReportingResearchResearch ActivityResearch DesignResourcesResuscitationRiskSeriesStatistical MethodsSubgroupSumSurvival RateTestingTimeTransfusionTranslational ResearchTranslationsTraumaTrauma ResearchUnited Statesbench to bedsideblood productclinical practicecomparative effectivenessdesigneffectiveness researchhazardhigh riskimprovedinjuredinnovationinsightinterestmedical attentionmortalitypredictive modelingprospectivepublic health relevancesimulationtrauma centersyears of life lost
项目摘要
DESCRIPTION (provided by applicant): In the U.S., injury is the leading cause of productive years of life lost and consumes 10-15% of all donated red blood cell (RBC) transfusions. While 25% of patients admitted to level 1 trauma centers receive at least one unit of RBCs, those receiving massive transfusion (MT), defined as 10 or more units within 24 hours, consume 71% of all RBC transfusions with a 40% risk of in-hospital mortality. Plasma and platelets (separate components) are given to 90% and 71% of MT patients, respectively. Despite high levels of recent clinical and translational research, significant gaps in knowledge and barriers remain. The most urgent include whether 1) more accurate prediction of the patients in need of MT, and 2) earlier intervention with the optimum MT protocol (i.e., sufficient volumes and ratios of plasma, platelet and RBC units) can improve patient outcomes. These unresolved issues in trauma transfusion practice persist largely because of constraints in study design (retrospective) and statistical analysis methods (standard regression modeling) that are poorly suited to the highly dynamic nature of the data. Subgrouping patients according to the standard definition of MT introduces survival bias by excluding the hemorrhaging patients who truly needed an MT protocol, but died or achieved hemostasis due to surgical or other intervention before receiving the 10th RBC unit. Survival bias also threatens previous studies because the standard use of cumulative 24 hour transfusion ratios and regression modeling of mortality cannot resolve whether the treatment prolonged survival or patients had to survive long enough to receive treatment (e.g., to achieve high plasma:platelet:RBC ratios). The use of alternate statistical strategies like time-dependent proporational hazards regression may not overcome these problems because of the potential for informative censoring and time-dependent confounding. Our objective is to address these issues by developing relevant methodology for latent class analysis and recurrent event data analysis. Two specific aims will be undertaken: 1) to develop and evaluate a latent class model to accurately identify the hemorrhaging patients who truly needed an MT and replace the existing MT definition as the gold standard in assessing the performance of prediction algorithms. Furthermore, the new gold standard will help us enhance the performance of existing predictive algorithms with the addition of new candidate predictors; and 2) to develop a multi-type recurrent event model for estimating time-dependent RBC, plasma, and platelet transfusion rates, and evaluating their impact on patient survival. The developed methods will be extensively tested by simulation studies and thereafter validated with data from the PRospective Observational Multicenter Major Trauma Transfusion (PROMMTT) study. Results from this research will guide the design and conduct of future comparative effectiveness research and facilitate more rapid translation of innovative improvements in MT protocols from bench to bedside. Our new statistical methods are expected to have broad application across many different clinical contexts and dynamic data sets.
描述(由申请人提供):在美国,损伤是导致有效寿命损失的主要原因,并且消耗了所有捐献红细胞(RBC)输注的10-15%。一级创伤中心收治的患者中有25%接受了至少一个单位的红细胞,而那些接受大量输血(MT)的患者(定义为24小时内10个或更多单位)消耗了所有红细胞输注量的71%,住院死亡率为40%。血浆和血小板(单独成分)分别给予90%和71%的MT患者。尽管最近的临床和转化研究水平很高,但在知识和障碍方面仍然存在重大差距。最紧迫的问题包括:1)更准确地预测需要MT的患者;2)早期干预最佳MT方案(即足够的血浆、血小板和红细胞单位的体积和比例)是否可以改善患者的预后。创伤输血实践中这些未解决的问题之所以持续存在,很大程度上是因为研究设计(回顾性)和统计分析方法(标准回归模型)的限制,这些方法不适合数据的高度动态性。根据MT的标准定义对患者进行亚分组,排除了真正需要MT方案的出血患者,但在接受第10个RBC单位之前因手术或其他干预而死亡或止血,从而引入了生存偏倚。生存偏倚也威胁到以前的研究,因为标准使用的累积24小时输血比率和死亡率回归模型不能确定治疗是否延长了生存期,或者患者是否必须存活足够长的时间才能接受治疗(例如,达到高血浆:血小板:红细胞比率)。使用诸如时间相关比例风险回归等替代统计策略可能无法克服这些问题,因为可能存在信息审查和时间相关混淆。我们的目标是通过开发潜在类分析和复发事件数据分析的相关方法来解决这些问题。研究将有两个具体目标:1)开发和评估潜在类别模型,以准确识别真正需要MT的出血患者,并取代现有MT定义作为评估预测算法性能的金标准。此外,新的黄金标准将帮助我们通过添加新的候选预测器来提高现有预测算法的性能;2)建立多类型复发事件模型,用于估计随时间变化的红细胞、血浆和血小板输注率,并评估其对患者生存的影响。开发的方法将通过模拟研究进行广泛测试,然后用前瞻性观察多中心重大创伤输血(PROMMTT)研究的数据进行验证。本研究的结果将指导未来比较有效性研究的设计和实施,并促进MT协议的创新改进从实验室到床边的更快转化。我们的新统计方法有望在许多不同的临床背景和动态数据集上有广泛的应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JING NING其他文献
JING NING的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JING NING', 18)}}的其他基金
Statistical Methods for Integration of Multiple Data Sources toward Precision Cancer Medicine
整合多个数据源以实现精准癌症医学的统计方法
- 批准号:
10415744 - 财政年份:2022
- 资助金额:
$ 23.07万 - 项目类别:
Statistical Methods for Integration of Multiple Data Sources toward Precision Cancer Medicine
整合多个数据源以实现精准癌症医学的统计方法
- 批准号:
10632124 - 财政年份:2022
- 资助金额:
$ 23.07万 - 项目类别:
Comparative Effectiveness of Cancer Research: Use Data from Multiple Sources
癌症研究的比较有效性:使用多个来源的数据
- 批准号:
9027966 - 财政年份:2016
- 资助金额:
$ 23.07万 - 项目类别:
Comparative Effectiveness of Cancer Research: Use Data from Multiple Sources
癌症研究的比较有效性:使用多个来源的数据
- 批准号:
9263902 - 财政年份:2016
- 资助金额:
$ 23.07万 - 项目类别:
Statistical Methodology Development in Blood Transfusion Protocol Research
输血方案研究中统计方法的发展
- 批准号:
8700487 - 财政年份:2013
- 资助金额:
$ 23.07万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 23.07万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 23.07万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 23.07万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 23.07万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 23.07万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 23.07万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 23.07万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 23.07万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 23.07万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 23.07万 - 项目类别:
Research Grant














{{item.name}}会员




