muMS2: an open source R package for analyzing and integrating multi-omics datasets to improve early detection and understanding of colorectal cancer

muMS2:一个开源 R 包,用于分析和集成多组学数据集,以改善结直肠癌的早期检测和理解

基本信息

  • 批准号:
    10415579
  • 负责人:
  • 金额:
    $ 40.81万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-06-01 至 2025-05-31
  • 项目状态:
    未结题

项目摘要

One in every 20 Americans develops colorectal cancer (CRC) and, once diagnosed, more than one-third will not survive 5 years. Although screening is available, stool assays such as fecal immunochemical test (FIT) and Cologuard have true positive rates ranging between 64-68% and false positive rate ranging between 5-10%. Moreover, other approaches such as colonoscopy are invasive and expensive and have low rates of patient adherence. There is clearly a need for additional biomarkers that complement existing screening procedures to identify individuals for subsequent colonoscopy and to better understand the biology that gives rise to tumors. Untargeted metabolomics has become an increasingly common approach to identify sources of such biomarkers from fecal samples; however, the general approach researchers use to analyze the data excludes the 95% of metabolites that currently lack an annotation. Animal models of CRC and human population studies have indicated that the gut microbiota has an underappreciated role in the disease. Therefore, it is critical that we characterize the metabolites generated by the gut microbiota to better understand the disease. The long-term goal of this research is to develop biomarkers that improve the detection of CRC and our understanding of the mechanisms that increase the risk of developing CRC. The objective of this proposal is to develop an open source R package, mums2, that allows researchers to identify metabolic biomarkers that can be associated with cancer regardless of whether they have already been annotated or whether they are produced by human or microbial cells. With this package, we will incorporate tools that allow researchers to implement the current state of the art for analyzing untargeted metabolomics and we will develop and validate methods for improving the quantification of MS features and clustering unknown metabolites based on their structural similarity. Three specific aims are proposed: (i) develop the mums2 R package, (ii) construct a predictive abundance algorithm for more accurate quantification of MS feature abundance, and (iii) construct operational metabolomics units (OMUs) as a framework for clustering unknown metabolites by structural similarity. Successful completion of these aims will result in a new platform for analyzing CRC metabolomics data for identifying biomarkers and understanding the underlying biology of tumorigenesis. To support this framework, we will create an open source R package, mums2, which will be useful for the expanding cancer microbiome and biomarker community. This package will democratize metabolomic analyses to broaden their adoption, reduce costs, improve the rigor and reproducibility of analyses, and enhance the ability to perform untargeted metabolomics analyses using a variety of biospecimens. Finally, the most important next step will be to apply these methods to better understand the interaction between the metabolome, microbiome, and tumorigenesis to identify diagnostic biomarkers and better understand the progression of CRC disease. The approaches and goals of the proposed research complement existing Informatics Technology for Cancer Research (ITCR) projects.
每20个美国人中就有一个会患上结直肠癌(CRC),而一旦确诊,超过三分之一的人不会患上结直肠癌

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Marcy J Balunas其他文献

Marcy J Balunas的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Marcy J Balunas', 18)}}的其他基金

muMS2: an open source R package for analyzing and integrating multi-omics datasets to improve early detection and understanding of colorectal cancer
muMS2:一个开源 R 包,用于分析和集成多组学数据集,以改善结直肠癌的早期检测和理解
  • 批准号:
    10625394
  • 财政年份:
    2022
  • 资助金额:
    $ 40.81万
  • 项目类别:
Metabolites from Edible Blue-Green Algae for Obesity-Induced Inflammation
可食用蓝绿藻的代谢物可治疗肥胖引起的炎症
  • 批准号:
    8812586
  • 财政年份:
    2015
  • 资助金额:
    $ 40.81万
  • 项目类别:
Tropical Disease Drug Discovery from Marine Cyanobacteria in Panama
从巴拿马海洋蓝藻中发现热带疾病药物
  • 批准号:
    8139768
  • 财政年份:
    2009
  • 资助金额:
    $ 40.81万
  • 项目类别:
Tropical Disease Drug Discovery from Marine Cyanobacteria in Panama
从巴拿马海洋蓝藻中发现热带疾病药物
  • 批准号:
    7557522
  • 财政年份:
    2009
  • 资助金额:
    $ 40.81万
  • 项目类别:
Tropical Disease Drug Discovery from Marine Cyanobacteria in Panama
从巴拿马海洋蓝藻中发现热带疾病药物
  • 批准号:
    8006416
  • 财政年份:
    2009
  • 资助金额:
    $ 40.81万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 40.81万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 40.81万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 40.81万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 40.81万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 40.81万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 40.81万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 40.81万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 40.81万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 40.81万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 40.81万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了