muMS2: an open source R package for analyzing and integrating multi-omics datasets to improve early detection and understanding of colorectal cancer

muMS2:一个开源 R 包,用于分析和集成多组学数据集,以改善结直肠癌的早期检测和理解

基本信息

  • 批准号:
    10415579
  • 负责人:
  • 金额:
    $ 40.81万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-06-01 至 2025-05-31
  • 项目状态:
    未结题

项目摘要

One in every 20 Americans develops colorectal cancer (CRC) and, once diagnosed, more than one-third will not survive 5 years. Although screening is available, stool assays such as fecal immunochemical test (FIT) and Cologuard have true positive rates ranging between 64-68% and false positive rate ranging between 5-10%. Moreover, other approaches such as colonoscopy are invasive and expensive and have low rates of patient adherence. There is clearly a need for additional biomarkers that complement existing screening procedures to identify individuals for subsequent colonoscopy and to better understand the biology that gives rise to tumors. Untargeted metabolomics has become an increasingly common approach to identify sources of such biomarkers from fecal samples; however, the general approach researchers use to analyze the data excludes the 95% of metabolites that currently lack an annotation. Animal models of CRC and human population studies have indicated that the gut microbiota has an underappreciated role in the disease. Therefore, it is critical that we characterize the metabolites generated by the gut microbiota to better understand the disease. The long-term goal of this research is to develop biomarkers that improve the detection of CRC and our understanding of the mechanisms that increase the risk of developing CRC. The objective of this proposal is to develop an open source R package, mums2, that allows researchers to identify metabolic biomarkers that can be associated with cancer regardless of whether they have already been annotated or whether they are produced by human or microbial cells. With this package, we will incorporate tools that allow researchers to implement the current state of the art for analyzing untargeted metabolomics and we will develop and validate methods for improving the quantification of MS features and clustering unknown metabolites based on their structural similarity. Three specific aims are proposed: (i) develop the mums2 R package, (ii) construct a predictive abundance algorithm for more accurate quantification of MS feature abundance, and (iii) construct operational metabolomics units (OMUs) as a framework for clustering unknown metabolites by structural similarity. Successful completion of these aims will result in a new platform for analyzing CRC metabolomics data for identifying biomarkers and understanding the underlying biology of tumorigenesis. To support this framework, we will create an open source R package, mums2, which will be useful for the expanding cancer microbiome and biomarker community. This package will democratize metabolomic analyses to broaden their adoption, reduce costs, improve the rigor and reproducibility of analyses, and enhance the ability to perform untargeted metabolomics analyses using a variety of biospecimens. Finally, the most important next step will be to apply these methods to better understand the interaction between the metabolome, microbiome, and tumorigenesis to identify diagnostic biomarkers and better understand the progression of CRC disease. The approaches and goals of the proposed research complement existing Informatics Technology for Cancer Research (ITCR) projects.
每20个美国人中就有一个患上结直肠癌(CRC),一旦确诊,超过三分之一的人不会患上结直肠癌。 生存5年。虽然筛查是可用的,但粪便测定如粪便免疫化学试验(FIT)和 脑炎疫苗真阳性率为64-68%,假阳性率为5- 10%。 此外,诸如结肠镜检查的其他方法是侵入性的且昂贵的,并且具有低的患者死亡率。 坚持。显然需要补充现有筛查程序的其他生物标志物, 为随后的结肠镜检查确定个体,并更好地了解引起肿瘤的生物学。 非靶向代谢组学已成为一种越来越常见的方法来确定这些生物标志物的来源 然而,研究人员用来分析数据的一般方法排除了95%的 目前缺乏注释的代谢物。CRC的动物模型和人群研究 表明肠道微生物群在疾病中的作用被低估。因此,我们必须 描述肠道微生物群产生的代谢物,以更好地了解疾病。长期 这项研究的目的是开发生物标志物,以提高CRC的检测和我们对CRC的理解。 增加CRC风险的机制。这项建议的目的是发展一个开放的 源R包,mums 2,使研究人员能够确定代谢生物标志物,可以与 癌症,无论它们是否已经被注释,或者它们是否由人类产生, 微生物细胞有了这个软件包,我们将纳入工具,使研究人员能够实现当前的状态 我们将开发和验证用于改善非靶向代谢组学的方法, MS特征的定量和基于其结构相似性聚类未知代谢物。三 具体目标是:(i)开发mums 2 R软件包,(ii)构建预测丰度算法 更准确地量化MS特征丰度,以及(iii)构建可操作的代谢组学单元 (OMU)作为通过结构相似性聚类未知代谢物的框架。成功完成 这些目标将产生一个新的平台,用于分析CRC代谢组学数据,以识别生物标志物, 了解肿瘤发生的潜在生物学。为了支持这个框架,我们将创建一个开源的 R包,mums 2,这将有助于扩大癌症微生物组和生物标志物社区。这 包将民主化代谢组学分析,以扩大其采用,降低成本,提高严谨性, 分析的可重复性,并增强使用各种代谢物进行非靶向代谢组学分析的能力。 生物标本。最后,最重要的下一步将是应用这些方法来更好地理解 代谢组、微生物组和肿瘤发生之间的相互作用,以确定诊断生物标志物, 了解CRC疾病的进展。拟议研究的方法和目标 现有的癌症研究信息技术(ITCR)项目。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Marcy J Balunas其他文献

Marcy J Balunas的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Marcy J Balunas', 18)}}的其他基金

muMS2: an open source R package for analyzing and integrating multi-omics datasets to improve early detection and understanding of colorectal cancer
muMS2:一个开源 R 包,用于分析和集成多组学数据集,以改善结直肠癌的早期检测和理解
  • 批准号:
    10625394
  • 财政年份:
    2022
  • 资助金额:
    $ 40.81万
  • 项目类别:
Metabolites from Edible Blue-Green Algae for Obesity-Induced Inflammation
可食用蓝绿藻的代谢物可治疗肥胖引起的炎症
  • 批准号:
    8812586
  • 财政年份:
    2015
  • 资助金额:
    $ 40.81万
  • 项目类别:
Tropical Disease Drug Discovery from Marine Cyanobacteria in Panama
从巴拿马海洋蓝藻中发现热带疾病药物
  • 批准号:
    8139768
  • 财政年份:
    2009
  • 资助金额:
    $ 40.81万
  • 项目类别:
Tropical Disease Drug Discovery from Marine Cyanobacteria in Panama
从巴拿马海洋蓝藻中发现热带疾病药物
  • 批准号:
    7557522
  • 财政年份:
    2009
  • 资助金额:
    $ 40.81万
  • 项目类别:
Tropical Disease Drug Discovery from Marine Cyanobacteria in Panama
从巴拿马海洋蓝藻中发现热带疾病药物
  • 批准号:
    8006416
  • 财政年份:
    2009
  • 资助金额:
    $ 40.81万
  • 项目类别:

相似海外基金

CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 40.81万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 40.81万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 40.81万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 40.81万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 40.81万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 40.81万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 40.81万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 40.81万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 40.81万
  • 项目类别:
    Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 40.81万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了