muMS2: an open source R package for analyzing and integrating multi-omics datasets to improve early detection and understanding of colorectal cancer
muMS2:一个开源 R 包,用于分析和集成多组学数据集,以改善结直肠癌的早期检测和理解
基本信息
- 批准号:10625394
- 负责人:
- 金额:$ 38.09万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-06-01 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:AdoptionAlgorithmsAmericanAnimal ModelAttentionBiological AssayBiological MarkersBiologyBloodButyratesCancer BiologyCancer Research ProjectCancerousCellsChemicalsChromatographyClinicalColonColonic NeoplasmsColonoscopyColorectal CancerCommunitiesComplementComplexComputer softwareDNADataData AnalysesData SetDemocracyDetectionDiagnosisDiseaseEarly DiagnosisEarly treatmentElementsEnvironmentExclusionFecesFeesFundingGenetic MarkersGoalsHealthHumanHuman MicrobiomeIn VitroIncidenceIndividualIndustrializationInformaticsLicensingMalignant NeoplasmsMalignant neoplasm of gastrointestinal tractMass Spectrum AnalysisMetabolicMetabolismMethodsModelingMolecular WeightMultiomic DataNeoplasmsPatternPersonsPopulationPreventionR programming languageReproducibilityResearchResearch PersonnelRiskRoleSamplingScreening procedureSignal TransductionSourceSpecimenStructureTaxonomyTechniquesTechnologyTestingTimeTumor BurdenUrineVolatile Fatty AcidsWritinganticancer researchbiomarker identificationcolorectal cancer progressioncolorectal cancer screeningcompliance behaviorcostdesigndiagnostic biomarkerdysbiosisfecal microbiotagut microbiotahuman population studyimprovedin silicointerestmetabolic profilemetabolomemetabolomicsmicrobialmicrobiomemicrobiotamortalitynoninvasive diagnosisopen sourcepublic health relevancescreeningsynergismtooltumortumorigenesis
项目摘要
One in every 20 Americans develops colorectal cancer (CRC) and, once diagnosed, more than one-third will not
survive 5 years. Although screening is available, stool assays such as fecal immunochemical test (FIT) and
Cologuard have true positive rates ranging between 64-68% and false positive rate ranging between 5-10%.
Moreover, other approaches such as colonoscopy are invasive and expensive and have low rates of patient
adherence. There is clearly a need for additional biomarkers that complement existing screening procedures to
identify individuals for subsequent colonoscopy and to better understand the biology that gives rise to tumors.
Untargeted metabolomics has become an increasingly common approach to identify sources of such biomarkers
from fecal samples; however, the general approach researchers use to analyze the data excludes the 95% of
metabolites that currently lack an annotation. Animal models of CRC and human population studies have
indicated that the gut microbiota has an underappreciated role in the disease. Therefore, it is critical that we
characterize the metabolites generated by the gut microbiota to better understand the disease. The long-term
goal of this research is to develop biomarkers that improve the detection of CRC and our understanding of the
mechanisms that increase the risk of developing CRC. The objective of this proposal is to develop an open
source R package, mums2, that allows researchers to identify metabolic biomarkers that can be associated with
cancer regardless of whether they have already been annotated or whether they are produced by human or
microbial cells. With this package, we will incorporate tools that allow researchers to implement the current state
of the art for analyzing untargeted metabolomics and we will develop and validate methods for improving the
quantification of MS features and clustering unknown metabolites based on their structural similarity. Three
specific aims are proposed: (i) develop the mums2 R package, (ii) construct a predictive abundance algorithm
for more accurate quantification of MS feature abundance, and (iii) construct operational metabolomics units
(OMUs) as a framework for clustering unknown metabolites by structural similarity. Successful completion of
these aims will result in a new platform for analyzing CRC metabolomics data for identifying biomarkers and
understanding the underlying biology of tumorigenesis. To support this framework, we will create an open source
R package, mums2, which will be useful for the expanding cancer microbiome and biomarker community. This
package will democratize metabolomic analyses to broaden their adoption, reduce costs, improve the rigor and
reproducibility of analyses, and enhance the ability to perform untargeted metabolomics analyses using a variety
of biospecimens. Finally, the most important next step will be to apply these methods to better understand the
interaction between the metabolome, microbiome, and tumorigenesis to identify diagnostic biomarkers and better
understand the progression of CRC disease. The approaches and goals of the proposed research complement
existing Informatics Technology for Cancer Research (ITCR) projects.
每20个美国人中就有一个罹患结直肠癌,而一旦确诊,超过三分之一的人不会。
存活5年。虽然可以进行筛查,但粪便免疫化学检测(FIT)和
科洛瓦的真阳性率在-68%之间,假阳性率在5%-10%之间。
此外,其他方法,如结肠镜检查,具有侵入性,费用昂贵,病人发生率低。
坚持不懈。显然需要额外的生物标志物来补充现有的筛查程序,以
确定个体进行随后的结肠镜检查,并更好地了解导致肿瘤的生物学因素。
非靶向代谢组学已成为鉴定此类生物标志物来源的一种日益普遍的方法
然而,研究人员用来分析数据的一般方法排除了95%的
目前缺少注释的代谢物。结直肠癌的动物模型和人类种群研究
表明肠道微生物区系在疾病中的作用被低估。因此,至关重要的是,我们
确定肠道微生物区系产生的代谢物的特征,以更好地了解疾病。长期的
这项研究的目标是开发生物标志物,以提高结直肠癌的检测和我们对结直肠癌的认识
增加发展儿童权利公约风险的机制。这项提议的目标是开发一种开放的
来源R包,MUMS2,允许研究人员识别与以下因素相关的代谢生物标记物
癌症,不管它们是否已经被注解,或者它们是由人类还是
微生物细胞。在这个包中,我们将包含允许研究人员实现当前状态的工具
分析非靶向代谢组学的艺术,我们将开发和验证改进
MS特征的量化和基于结构相似性的未知代谢物的聚类。三
具体目标是:(I)开发Mums2R程序包;(Ii)构建预测丰度算法
为了更准确地量化MS特征丰度,以及(Iii)构建可操作的代谢组学单元
(OMU)作为根据结构相似性对未知代谢物进行分类的框架。成功完成
这些目标将导致一个新的平台,用于分析CRC代谢组学数据,以识别生物标记物和
了解肿瘤发生的潜在生物学基础。为了支持这个框架,我们将创建一个开源的
R包,Mums2,这将对不断扩大的癌症微生物组和生物标记物社区有用。这
一揽子将使代谢分析大众化,以扩大其采用范围,降低成本,提高严谨性,并
分析的重复性,并增强使用各种方法进行非靶向代谢组学分析的能力
生物有机磷农药。最后,最重要的下一步将是应用这些方法来更好地理解
代谢组、微生物组和肿瘤发生之间的相互作用以确定诊断生物标记物并更好地
了解结直肠癌的进展情况。拟议研究的方法和目标是补充
现有的癌症研究信息技术(ITCR)项目。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Marcy J Balunas其他文献
Marcy J Balunas的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Marcy J Balunas', 18)}}的其他基金
muMS2: an open source R package for analyzing and integrating multi-omics datasets to improve early detection and understanding of colorectal cancer
muMS2:一个开源 R 包,用于分析和集成多组学数据集,以改善结直肠癌的早期检测和理解
- 批准号:
10415579 - 财政年份:2022
- 资助金额:
$ 38.09万 - 项目类别:
Metabolites from Edible Blue-Green Algae for Obesity-Induced Inflammation
可食用蓝绿藻的代谢物可治疗肥胖引起的炎症
- 批准号:
8812586 - 财政年份:2015
- 资助金额:
$ 38.09万 - 项目类别:
Tropical Disease Drug Discovery from Marine Cyanobacteria in Panama
从巴拿马海洋蓝藻中发现热带疾病药物
- 批准号:
8139768 - 财政年份:2009
- 资助金额:
$ 38.09万 - 项目类别:
Tropical Disease Drug Discovery from Marine Cyanobacteria in Panama
从巴拿马海洋蓝藻中发现热带疾病药物
- 批准号:
7557522 - 财政年份:2009
- 资助金额:
$ 38.09万 - 项目类别:
Tropical Disease Drug Discovery from Marine Cyanobacteria in Panama
从巴拿马海洋蓝藻中发现热带疾病药物
- 批准号:
8006416 - 财政年份:2009
- 资助金额:
$ 38.09万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 38.09万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 38.09万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 38.09万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 38.09万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 38.09万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 38.09万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 38.09万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 38.09万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 38.09万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 38.09万 - 项目类别:
Research Grant