Use of Predictive Analytics to Quantify Neonatal Hypothermia Burden After Cardiac Surgery
使用预测分析来量化心脏手术后新生儿体温过低的负担
基本信息
- 批准号:10415862
- 负责人:
- 金额:$ 4.93万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-01 至 2024-04-30
- 项目状态:已结题
- 来源:
- 关键词:AddressArrhythmiaAwardBirthCardiacCardiac Surgery proceduresCardiopulmonary BypassCare given by nursesCaringCell physiologyCessation of lifeCharacteristicsChildhoodClinicalClinical ResearchCommunicationComplexCongenital AbnormalityConsensusCost of IllnessCritical CareCritical IllnessDataData AnalysesDatabasesDefectDevelopmentElectronic Health RecordEnrollmentEventFailureFutureGoalsHealthHealthcareHemorrhageHospitalizationHourHypoxemiaImpairmentInfantInstitutionIntegumentary systemIntensive Care UnitsInterventionIschemiaKnowledgeLeadLength of StayLinkLogistic RegressionsLongevityMapsMediatingMetabolic acidosisModelingMonitorMorbidity - disease rateNeonatalNursesOperative Surgical ProceduresOutcomeOutputPC4 GenePatient-Focused OutcomesPatientsPatternPediatric HospitalsPhiladelphiaPhysiologicalPlatelet aggregationPlayPopulationPredictive AnalyticsPrevalencePreventionPrincipal Component AnalysisPrivatizationProductivityProspective cohort studyRegulationReportingResearchResearch PersonnelRespiratory FailureRespiratory distressRiskRisk EstimateRoleSafetySchool NursingSubgroupSurgical Wound InfectionSurvival AnalysisSystemTechniquesTemperatureTimeTime trendTrainingUniversitiesVasoconstrictor AgentsVulnerable PopulationsWeight Gainadverse outcomebasecareerclinical practiceclinically relevantclinically significantcongenital heart disordercostcritical care nursingdatabase queryearly onsetexperiencehemodynamicsimprovedinclusion criteriaindexingmortalitymultidimensional datamultilevel analysisnatural hypothermianeonatal outcomeneonateneutrophilnovelpatient safetyprecision medicinepredictive modelingpreemptive interventionpreventrepositoryrespiratorytrendunsupervised learning
项目摘要
ABSTRACT
Neonates (infants ≤ 28 days), especially those with congenital heart disease (CHD), are among the most
vulnerable populations cared for by critical care nurses. Approximately, two out of three CHD neonates
experience unintentional hypothermia after cardiopulmonary bypass (CPB). Unintentional hypothermia impairs
cellular function, which can be linked to poor outcomes frequently reported in this population. To date, there
are no studies examining the association between the burden of unintentional hypothermia and clinical
outcomes in neonates with CHD. This knowledge would render future opportunities to improve nursing care
and prevent avoidable safety events in these vulnerable neonates. To address this gap, we propose to use
retrospective data from CardioAccess (database local to the Children’s Hospital of Philadelphia [CHOP]),
which includes one of the largest multicenter repositories of neonatal cardiac surgery data available to date
(Pediatric Cardiac Critical Care Consortium [PC4]), as well as, the electronic health record. Using data from at
least 432 neonates who have undergone CPB between 2015 and 2019, we will quantify the time course of
hourly temperature trajectories within the initial 24–48 hours after CPB and evaluate their relation to key clinical
outcomes. We will specifically study the temporal trends of unintentional hypothermia burden (temperature
depth and duration), which challenges current practice, where care is based on maintaining a single,
preselected temperature threshold that is driven by consensus, rather than evidence. Single threshold values
are not dynamic representations of the complexity that makes up temperature. A more robust output, such as
an accumulative hypothermia burden index, is needed to assist clinicians with interpretation of this dynamic
indicator of overall health. Our Specific Aims are: 1) Identify distinct temporal temperature patterns in CHD
neonates after CPB using both: a multilevel model for intensive longitudinal data with group-based trajectory
modeling; and an unsupervised machine learning technique using principal component analysis followed by k-
means clustering of longitudinal data. 2) Determine the relationship between hypothermia burden subgroups /
clusters and important clinical outcomes in this population. Our team has a demonstrated expertise in building
clinically relevant and physiologically plausible markers of adverse outcomes in critically ill patients. This study
aligns with the NINR’s priorities of promoting wellness and preventing illness across the lifespan, as well as,
using recent advances in precision medicine. The research conducted under this award will take place at the
University of Pittsburgh School of Nursing, a research-intensive institution (data analysis), and CHOP (data
provision). The personalized training plan outlined in this application, supports the applicant’s career and
academic development goals to become an independent nurse researcher.
摘要
新生儿(婴儿≤28天),特别是那些患有先天性心脏病的人,是最多的
由重症监护护士照顾的弱势人群。大约每三个新生儿中就有两个患有冠心病
在体外循环(CPB)后出现意外体温过低。无意的体温过低会损害
细胞功能,这可能与这一人群中经常报告的不良结局有关。到目前为止,有
是否没有研究研究非故意体温过低的负担与临床之间的关系?
先天性心脏病新生儿的结局。这一知识将为改善护理提供未来的机会
并防止这些脆弱的新生儿发生可避免的安全事件。为了解决这一差距,我们建议使用
来自MedicoAccess(费城儿童医院本地数据库[CHOP])的回顾数据,
它包括迄今为止可用的最大的多中心新生儿心脏手术数据存储库之一
(儿科心脏危重护理联合会[PC4]),以及电子健康记录。使用来自以下位置的数据
2015年至2019年期间至少有432名新生儿接受了体外循环,我们将量化
体外循环后最初24-48小时内的每小时体温轨迹及其与关键临床的关系
结果。我们将具体研究非故意低温负担(温度)的时间趋势
深度和持续时间),这对当前的做法提出了挑战,在目前的做法中,护理基于保持单一的、
预先选定的温度阈值是由共识驱动的,而不是证据。单阈值
并不是构成温度的复杂性的动态表示。更稳健的产出,例如
需要一个累积低温负荷指数来帮助临床医生解释这种动态。
整体健康状况的指标。我们的具体目标是:1)确定CHD的不同的时间温度模式
使用两者的CPB术后新生儿:基于群体轨迹的密集纵向数据的多水平模型
以及一种基于主成分分析的无监督机器学习技术。
指的是纵向数据的聚类。2)确定低温负荷亚组/之间的关系
在这一人群中的聚集性和重要的临床结果。我们的团队在建造建筑方面拥有公认的专业知识
危重病患者不良结局的临床相关和生理上可信的标记物。本研究
与NINR促进健康和预防终身疾病的优先事项一致,以及,
利用精准医学的最新进展。根据该奖项进行的研究将在
匹兹堡大学护理学院,一家研究密集型机构(数据分析)和CHOP(数据
条文)。此申请表中概述的个性化培训计划,支持申请者的职业生涯和
学术发展目标是成为一名独立的护士研究员。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stephanie M Helman其他文献
Stephanie M Helman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stephanie M Helman', 18)}}的其他基金
Use of Predictive Analytics to Quantify Neonatal Hypothermia Burden After Cardiac Surgery
使用预测分析来量化心脏手术后新生儿体温过低的负担
- 批准号:
10650743 - 财政年份:2021
- 资助金额:
$ 4.93万 - 项目类别:
相似海外基金
DEVELOPING A HUMAN STEM CELL-DERIVED HEART MODEL TO CHARACTERIZE A NOVEL ARRHYTHMIA SYNDROME
开发人类干细胞衍生的心脏模型来表征新型心律失常综合征
- 批准号:
495592 - 财政年份:2023
- 资助金额:
$ 4.93万 - 项目类别:
Preliminary Study to Establish Heavy Ion Ablation Therapy for Lethal Ventricular Arrhythmia
重离子消融治疗致死性室性心律失常的初步研究
- 批准号:
23K14885 - 财政年份:2023
- 资助金额:
$ 4.93万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Arrhythmia Mechanisms Modulated by Intercalated Disc Extracellular Nanodomains
闰盘细胞外纳米结构域调节心律失常的机制
- 批准号:
10668025 - 财政年份:2023
- 资助金额:
$ 4.93万 - 项目类别:
Development of a next-generation telemonitoring system for prognostic prediction of the onset of heart failure and arrhythmia
开发下一代远程监测系统,用于心力衰竭和心律失常发作的预后预测
- 批准号:
23K09597 - 财政年份:2023
- 资助金额:
$ 4.93万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The role of inflammation in the pathogenesis of atrial fibrillation: Implications for atrial remodeling pathophysiology and for early atrial arrhythmia recurrences following radiofrequency ablation and pulsed field ablation
炎症在心房颤动发病机制中的作用:对心房重塑病理生理学以及射频消融和脉冲场消融后早期房性心律失常复发的影响
- 批准号:
514892030 - 财政年份:2023
- 资助金额:
$ 4.93万 - 项目类别:
WBP Fellowship
Improved arrhythmia ablation via MR-guided robotic catheterization and multimodal clinician feedback
通过 MR 引导的机器人导管插入术和多模式临床医生反馈改善心律失常消融
- 批准号:
10638497 - 财政年份:2023
- 资助金额:
$ 4.93万 - 项目类别:
Prototype development and validation of soft robotic sensor arrays for mapping cardiac arrhythmia
用于绘制心律失常的软机器人传感器阵列的原型开发和验证
- 批准号:
10722857 - 财政年份:2023
- 资助金额:
$ 4.93万 - 项目类别:
A novel regulator of Ca2+ homeostasis and arrhythmia susceptibility
Ca2 稳态和心律失常易感性的新型调节剂
- 批准号:
10724935 - 财政年份:2023
- 资助金额:
$ 4.93万 - 项目类别:
Novel Stellate Ganglia Chemo-ablation Approach to Treat Cardiac Arrhythmia and Cardiac Remodeling in Heart Failure
新型星状神经节化疗消融方法治疗心律失常和心力衰竭心脏重塑
- 批准号:
10727929 - 财政年份:2023
- 资助金额:
$ 4.93万 - 项目类别:
The role N-terminal acetylation in dilated cardiomyopathy and associated arrhythmia
N-末端乙酰化在扩张型心肌病和相关心律失常中的作用
- 批准号:
10733915 - 财政年份:2023
- 资助金额:
$ 4.93万 - 项目类别:














{{item.name}}会员




