The role N-terminal acetylation in dilated cardiomyopathy and associated arrhythmia
N-末端乙酰化在扩张型心肌病和相关心律失常中的作用
基本信息
- 批准号:10733915
- 负责人:
- 金额:$ 68万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-03 至 2027-04-30
- 项目状态:未结题
- 来源:
- 关键词:AblationAcetylationAcetyltransferaseAction PotentialsAffectAnimal ModelArrhythmiaBiological ModelsCalciumCardiacCardiac MyocytesCardiomyopathiesCardiovascular DiseasesCatalytic DomainCharacteristicsComplexDataDevelopmental Delay DisordersDilated CardiomyopathyDiseaseElectrophysiology (science)FamilyFamily memberFemaleFibrosisFunctional disorderGenetic Predisposition to DiseaseHeartHeart AbnormalitiesHeart DiseasesHeart failureHomeostasisHumanImpairmentIndividualIon ChannelIonsKnockout MiceLearning DisabilitiesMediatingModelingModificationMorbidity - disease rateMutationMyocardialMyocardial dysfunctionN-terminalPatientsPhenotypePhysiologicalPost-Translational Protein ProcessingPotassiumPotassium ChannelProteinsProteomeProteomicsRecurrenceRiskRoleSodiumSodium ChannelStructureSudden DeathTestingVentricular ArrhythmiaVentricular Dysfunctionautism spectrum disorderboysclinical phenotypecongenital heart disordergenetic pedigreeheart functionheart rhythmimprovedinduced pluripotent stem cellinduced pluripotent stem cell derived cardiomyocytesinsightkindredmalemortalitymouse modelnoveloverexpressionpressureprotein complexrisk stratificationstem cell modeltherapeutic development
项目摘要
PROJECT SUMMARY
Cardiomyopathy and heart failure are leading causes of morbidity and mortality world-wide. In
addition to ventricular dysfunction, heart-failure associated ventricular arrhythmias cause sudden
death with few disease-modifying therapies. Changes in myocardial conduction, increased fibrosis,
alterations of ion channel characteristics and genetic susceptibilities have all been postulated to
underlie the increased risk of arrhythmia in heart failure, but no unifying mechanism is known. Post-
translational modifications (PTMs) of cardiac proteins have emerged as critical factors in mediating
normal physiologic function or leading to heart disease when dysregulated. Recently mutations in the
N-terminal acetyltransferase complex type A (NatA) have been identified in patients with congenital
heart disease, cardiomyopathy, and arrhythmia. This protein complex acetylates the N-terminus of
nascent proteins regulating stability, subcellular localization, and complex formation, with nearly 40%
of the proteome as potential targets. We have recently identified a large family with a novel mutation
in the catalytic subunit of NatA, NAA10. Male patients have severely prolonged QTs, recurrent
arrhythmias, developmental delay, learning disabilities, and cardiomyopathy, with female patients
more variably affected. We created models of NAA10 dysfunction using induced pluripotent stem
cells (iPSCs) derived from several affected male patients. Electrophysiologic analysis of differentiated
iPSC-derived cardiomyocytes (iPSC-CMs) demonstrated action potential duration (APD)
prolongation, abnormalities of sarcomeric structure, calcium handling and corresponding
dysregulation of sodium and potassium currents. Establishing a network of collaborators, we
investigated the mechanism of NAA10 dysfunction and developed an animal model for cardiac-
specific ablation of NAA10. We propose to use our scalable model systems to investigate the
currently unknown role of N-terminal acetylation within the heart as an entry point to understanding
the mechanisms of arrhythmia risk in heart failure. In Aim 1, we will determine the mechanism of how
N-terminal acetylation regulates sodium and potassium ion channels along with the discovery of other
target proteins. In Aim 2, we will use recently developed murine models to selectively ablate Naa10
and the paralogue Naa12 within the heart to determine the causative mechanisms of N-terminal
acetylation in heart failure and arrhythmogenesis. In Aim 3, we examine the contribution of N-terminal
acetylation in acquired forms of heart disease including human heart failure. This transformative
proposal will provide novel mechanistic insight into the poorly understood role of N-terminal
acetylation in cardiovascular disease with potential for improved arrhythmia risk stratification and
therapeutic development.
项目摘要
心肌病和心力衰竭是世界范围内发病率和死亡率的主要原因。在
除了心室功能障碍之外,心力衰竭相关的室性心律失常引起突发性心律失常,
几乎没有改善疾病的治疗方法。心肌传导改变,纤维化增加,
离子通道特性和遗传亲合性的改变都被假定为
是心力衰竭时心律失常风险增加的基础,但尚无统一的机制。后
心脏蛋白质的翻译修饰(PTM)已经成为介导心肌细胞凋亡的关键因素。
正常生理功能或在失调时导致心脏病。最近,
N-末端乙酰转移酶复合物A型(NatA)已在先天性
心脏病、心肌病和心律失常。这种蛋白质复合物乙酰化的N-末端
新生蛋白调节稳定性,亚细胞定位和复合物形成,近40%
蛋白质组作为潜在的目标。我们最近发现了一个带有新突变的大家族
在NatA的催化亚基NAA 10中。男性患者QT间期严重延长,复发
心律失常、发育迟缓、学习障碍和心肌病,女性患者
更受影响。我们使用诱导的多能干细胞建立了NAA 10功能障碍模型,
细胞(iPSC)来自几个受影响的男性患者。分化型心肌梗死的电生理分析
iPSC衍生的心肌细胞(iPSC-CM)表现出动作电位时程(APD)
延长,肌节结构异常,钙处理和相应的
钠和钾电流失调。建立合作者网络,我们
研究了NAA 10功能障碍的机制,并建立了一种心血管疾病的动物模型。
特异性消融NAA 10。我们建议使用我们的可扩展模型系统来研究
目前尚不清楚N-末端乙酰化在心脏中的作用,
心力衰竭中心律失常风险的机制。在目标1中,我们将确定
N-末端乙酰化调节钠和钾离子通道沿着的发现,
靶蛋白。在目标2中,我们将使用最近开发的小鼠模型来选择性地消融Naa 10
和心脏内的para-Naa 12,以确定N-末端的致病机制。
乙酰化在心力衰竭和心肌梗死中的作用。在目标3中,我们研究了N-末端的贡献,
乙酰化在获得性心脏病包括人心力衰竭中的作用。这种变革性
该提案将提供新的机制深入了解N-末端的作用,
乙酰化在心血管疾病中具有改善心律失常风险分层的潜力,
治疗发展
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Vassilios James Bezzerides其他文献
Vassilios James Bezzerides的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Vassilios James Bezzerides', 18)}}的其他基金
相似海外基金
Investigating the functions of histone acetylation in genome organization and leukemogenesis
研究组蛋白乙酰化在基因组组织和白血病发生中的功能
- 批准号:
EP/Y000331/1 - 财政年份:2023
- 资助金额:
$ 68万 - 项目类别:
Research Grant
Gene Modulation of Acetylation Modifiers to Reveal Regulatory Links to Human Cardiac Electromechanics
乙酰化修饰剂的基因调节揭示与人类心脏机电的调节联系
- 批准号:
10677295 - 财政年份:2023
- 资助金额:
$ 68万 - 项目类别:
Novel roles of PDK2 in heart failure: Regulation of mitochondrial nuclear crosstalk via metabolic regulation and histone acetylation
PDK2 在心力衰竭中的新作用:通过代谢调节和组蛋白乙酰化调节线粒体核串扰
- 批准号:
10635599 - 财政年份:2023
- 资助金额:
$ 68万 - 项目类别:
Regulation of hepatic lysine N-acetylation by cysteine proximity due to alcohol toxicity
酒精毒性导致的半胱氨酸接近对肝脏赖氨酸 N-乙酰化的调节
- 批准号:
10752320 - 财政年份:2023
- 资助金额:
$ 68万 - 项目类别:
Histone Acetylation Regulates Microglial Innate Immune Memory
组蛋白乙酰化调节小胶质细胞先天免疫记忆
- 批准号:
478927 - 财政年份:2023
- 资助金额:
$ 68万 - 项目类别:
Operating Grants
Dysregulation of Histone Acetylation in Parkinson's Disease
帕金森病中组蛋白乙酰化的失调
- 批准号:
10855703 - 财政年份:2023
- 资助金额:
$ 68万 - 项目类别:
Obesity-related hypertension: the contribution of PPAR gamma acetylation and asprosin
肥胖相关高血压:PPAR γ 乙酰化和白脂素的贡献
- 批准号:
10654210 - 财政年份:2023
- 资助金额:
$ 68万 - 项目类别:
In vivo tracing of hepatic ethanol metabolism to histone acetylation: role of ACSS2 in alcohol-induced liver injury
肝脏乙醇代谢与组蛋白乙酰化的体内追踪:ACSS2 在酒精性肝损伤中的作用
- 批准号:
10667952 - 财政年份:2023
- 资助金额:
$ 68万 - 项目类别:
The function of TWIST1 acetylation in cell fate and tissue development
TWIST1 乙酰化在细胞命运和组织发育中的作用
- 批准号:
10726986 - 财政年份:2023
- 资助金额:
$ 68万 - 项目类别:
Molecular control of non-histone protein acetylation in budding yeast
芽殖酵母非组蛋白乙酰化的分子控制
- 批准号:
RGPAS-2021-00003 - 财政年份:2022
- 资助金额:
$ 68万 - 项目类别:
Discovery Grants Program - Accelerator Supplements