Metabolic Basis of Bacterial Community Function in the Cystic Fibrosis Airway
囊性纤维化气道细菌群落功能的代谢基础
基本信息
- 批准号:10416061
- 负责人:
- 金额:$ 45.05万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-06-02 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:AcuteAcute DiseaseAntibioticsAntimicrobial ResistanceBacteriaBig DataBioinformaticsCell Culture TechniquesChronicChronic DiseaseClinicalClinical DataCommunitiesComplexComputer ModelsConsumptionCulture-independent methodsCystic FibrosisDataData SetDevelopmentDiseaseDisease OutcomeDoseEnergy-Generating ResourcesEventExhibitsExperimental ModelsExposure toFeeding PatternsGenetic DiseasesGenetic studyIn VitroIndividualInfectionLungLung infectionsMachine LearningMeasuresMetabolicMetadataMicrobeMicrobial PhysiologyMinimum Inhibitory Concentration measurementModelingMorbidity - disease rateMucous body substanceMutationNatureOrganismOutcomeOutcome MeasureOutputPathway interactionsPatientsPharmaceutical PreparationsPhenotypePrognosisPseudomonas aeruginosaPseudomonas aeruginosa infectionPulmonary Cystic FibrosisPulmonary Function Test/Forced Expiratory Volume 1RegimenResearchResistanceRoleSamplingSputumStaphylococcus aureusStreptococcusStructureTestingVirulenceWorkantibiotic toleranceantimicrobialantimicrobial drugbacterial communitybasebioinformatics toolcystic fibrosis airwaycystic fibrosis infectioncystic fibrosis patientsexperimental studyfeedingimprovedin silicoin vitro Modelin vivoinsightmembermetabolomicsmicrobialmicrobial communitymortalitynovelnovel therapeuticspathogenic bacteriapolymicrobial biofilmpolymicrobial diseasepulmonary functionpulmonary function declinesuccesstooltranslational impact
项目摘要
Abstract. Cystic fibrosis (CF) is a fatal genetic disease characterized by overproduction of mucus in the lungs
followed by chronic lung infections. Conventional wisdom has been that most CF lung infections involve a
single dominant organism, most commonly the pathogenic bacterium Pseudomonas aeruginosa. Advances in
culture-independent techniques have revealed that CF lung infections are rarely mono-microbial and instead
usually involve complex microbial communities, yet the interspecies interactions that drive these communities
are poorly understood. Furthermore, numerous studies have demonstrated that polymicrobial infections are
more difficult than mono-microbial infections to eradicate with antibiotics, leading to the concept of recalcitrant
communities. The mechanisms underlying recalcitrance are thought to involve synergistic interactions between
community members, but very little data are available to understand this phenomenon. Combined with the
realization that many CF patients respond poorly to available antibiotic regimens compels a more detailed
understanding of interspecies interactions and their impacts on antibiotic recalcitrance to improve the treatment
of CF infections, as well as other polymicrobial diseases. Here, we combine big-data bioinformatics, in silico
computational modeling and in vitro culture experiments to gain insights into the metabolic interactions that
drive CF disease outcomes and antibiotic recalcitrance. The research will leverage an available data set of
hundreds of CF patient samples that provide both bacterial composition data and clinical metadata, including
measures of lung function. These samples will be clustered according to their measured compositions and
metabolic capabilities predicted through computational metabolic modeling to test the hypothesis that the vast
complexity of these many bacterial communities can be collapsed into a small number of model communities
that capture most of the observed metabolic variability. These computational predictions will be tested by
developing in vitro cell culture models that recapitulate the most important metabolic features of the in vivo
polymicrobial communities (Aim 1). By applying bioinformatics and modeling to the same clinical data, we will
test the hypothesis that community metabolic features drive disease outcomes and the virulence potential of
these communities (Aim 2). Finally, we will interrogate the clinical data and in vitro communities to test the
hypothesis that community metabolic features drive antibiotic recalcitrance and differentiate community
responsiveness to antibiotics according to these metabolic features (Aim 3). Our research will yield novel
insights into how complex polymicrobial communities are compositionally structured, interact metabolically,
contribute to disease and respond to antibiotics. Moreover, the research will validate in vitro models that offer
the potential for development of novel antimicrobial strategies to better treat chronic, polymicrobial infections in
CF and other diseases. Our transdisciplinary team offers the necessary expertise in bioinformatics,
computational modeling, microbial physiology and CF polymicrobial infections to tackle this complex problem.
抽象的。囊性纤维化(CF)是一种致命的遗传性疾病,其特征是肺内粘液分泌过多
然后是慢性肺部感染传统观点认为,大多数CF肺部感染涉及
单一优势菌,最常见的致病菌铜绿假单胞菌。进展
非培养技术已经揭示CF肺部感染很少是单一微生物的,
通常涉及复杂的微生物群落,但驱动这些群落的物种间相互作用
我们对此知之甚少。此外,许多研究表明,多种微生物感染是
比单一微生物感染更难用抗生素根除,导致了抗真菌的概念。
社区.潜在的抗肿瘤机制被认为涉及以下因素之间的协同作用:
社区成员,但很少有数据可以了解这种现象。结合
认识到许多CF患者对可用的抗生素治疗方案反应不佳,
了解种间相互作用及其对抗生素耐药性的影响,以改善治疗
CF感染,以及其他多种微生物疾病。在这里,我们将联合收割机大数据生物信息学,
计算建模和体外培养实验,以深入了解代谢相互作用,
推动CF疾病结局和抗生素耐药性。这项研究将利用现有的数据集,
提供细菌组成数据和临床元数据的数百份CF患者样本,包括
测量肺功能。这些样品将根据其测量的组成进行聚类,
通过计算代谢模型预测的代谢能力,以测试这一假设,即
这些许多细菌群落的复杂性可以分解成少量的模型群落
捕捉到了大部分观察到的代谢变异。这些计算预测将由
开发体外细胞培养模型,重现体内最重要的代谢特征,
多微生物群落(Aim 1)。通过将生物信息学和建模应用于相同的临床数据,
测试假设,社区代谢特征驱动疾病的结果和毒力的潜力,
这些社区(目标2)。最后,我们将询问临床数据和体外社区,以测试
假设群落代谢特征驱动抗生素顽固性并区分群落
根据这些代谢特征对抗生素的反应性(目的3)。我们的研究将产生新的
深入了解复杂的多微生物群落是如何组成结构的,如何在代谢上相互作用,
导致疾病并对抗生素产生反应。此外,该研究将验证体外模型,
开发新的抗菌策略以更好地治疗慢性多种微生物感染的潜力,
CF和其他疾病。我们的跨学科团队提供生物信息学方面的必要专业知识,
计算建模,微生物生理学和CF多微生物感染来解决这个复杂的问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
George A. O'Toole其他文献
蛍光菌のバイオフィルム形成に関与するジグアニル酸シクラーゼの同定
荧光假单胞菌生物膜形成中涉及的二鸟苷酸环化酶的鉴定
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
吉岡 資郎;Peter D. Newell;George A. O'Toole - 通讯作者:
George A. O'Toole
Jekyll or hide?
是展露还是隐藏?
- DOI:
10.1038/432680a - 发表时间:
2004-12-08 - 期刊:
- 影响因子:48.500
- 作者:
George A. O'Toole - 通讯作者:
George A. O'Toole
Intestinal emBacteroides/em modulates inflammation, systemic cytokines, and microbial ecology via propionate in a mouse model of cystic fibrosis
在囊性纤维化小鼠模型中,肠道拟杆菌通过丙酸盐调节炎症、全身性细胞因子和微生物生态
- DOI:
10.1128/mbio.03144-23 - 发表时间:
2024-01-23 - 期刊:
- 影响因子:4.700
- 作者:
Courtney E. Price;Rebecca A. Valls;Alexis R. Ramsey;Nicole A. Loeven;Jane T. Jones;Kaitlyn E. Barrack;Joseph D. Schwartzman;Darlene B. Royce;Robert A. Cramer;Juliette C. Madan;Benjamin D. Ross;James Bliska;George A. O'Toole - 通讯作者:
George A. O'Toole
蛍光菌Pf0-1 株のバイオフィルム形成を促進するジグアニル酸シクラーゼの同定
促进荧光假单胞菌菌株 Pf0-1 生物膜形成的二鸟苷酸环化酶的鉴定
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
吉岡 資郎;Peter D. Newell;George A. O'Toole - 通讯作者:
George A. O'Toole
蛍光菌Pf0-1株のバイオフィルム形成を促進するジグアニル酸シクラーゼの同定
促进荧光假单胞菌菌株 Pf0-1 生物膜形成的二鸟苷酸环化酶的鉴定
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
吉岡 資郎;Peter D. Newell;George A. O'Toole - 通讯作者:
George A. O'Toole
George A. O'Toole的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('George A. O'Toole', 18)}}的其他基金
cdG Signaling and Adhesion Deployment During Biofilm Initiation
生物膜启动期间的 cdG 信号传导和粘附部署
- 批准号:
10597249 - 财政年份:2022
- 资助金额:
$ 45.05万 - 项目类别:
cdG Signaling and Adhesion Deployment During Biofilm Initiation
生物膜启动期间的 cdG 信号传导和粘附部署
- 批准号:
10417364 - 财政年份:2022
- 资助金额:
$ 45.05万 - 项目类别:
Arsenic, the Microbiome & Health Outcomes: Mechanisms to Methods of Intervention
砷,微生物组
- 批准号:
10582816 - 财政年份:2022
- 资助金额:
$ 45.05万 - 项目类别:
Metabolic Basis of Bacterial Community Function in the Cystic Fibrosis Airway
囊性纤维化气道细菌群落功能的代谢基础
- 批准号:
10293007 - 财政年份:2021
- 资助金额:
$ 45.05万 - 项目类别:
Metabolic Basis of Bacterial Community Function in the Cystic Fibrosis Airway
囊性纤维化气道细菌群落功能的代谢基础
- 批准号:
10624262 - 财政年份:2021
- 资助金额:
$ 45.05万 - 项目类别:
Surface sensing, memory, and motility control in biofilm formation
生物膜形成中的表面传感、记忆和运动控制
- 批准号:
10317069 - 财政年份:2019
- 资助金额:
$ 45.05万 - 项目类别:
Surface sensing, memory, and motility control in biofilm formation
生物膜形成中的表面传感、记忆和运动控制
- 批准号:
10080709 - 财政年份:2019
- 资助金额:
$ 45.05万 - 项目类别:
Surface sensing, memory, and motility control in biofilm formation
生物膜形成中的表面传感、记忆和运动控制
- 批准号:
10546429 - 财政年份:2019
- 资助金额:
$ 45.05万 - 项目类别:
相似海外基金
Improving Acute Disease Management for Patients with Alzheimer's Disease and Related Dementias
改善阿尔茨海默病和相关痴呆症患者的急性疾病管理
- 批准号:
10712647 - 财政年份:2001
- 资助金额:
$ 45.05万 - 项目类别:
INDUCTION OF ACUTE DISEASE IN MACAQUES BY NEF GENE VARIANT OF SIVMAC239
SIVMAC239 的 NEF 基因变体在猕猴中诱导急性疾病
- 批准号:
6247642 - 财政年份:1997
- 资助金额:
$ 45.05万 - 项目类别:
INDUCTION OF ACUTE DISEASE IN MACAQUES BY NEF GENE VARIANT OF SIVMAC239
SIVMAC239 的 NEF 基因变体在猕猴中诱导急性疾病
- 批准号:
3718999 - 财政年份:
- 资助金额:
$ 45.05万 - 项目类别:
Neurophysiological alterations in multiple sclerosis patients during acute disease acivity
多发性硬化症患者急性疾病活动期间的神经生理学变化
- 批准号:
465668867 - 财政年份:
- 资助金额:
$ 45.05万 - 项目类别:
Research Grants
SIVMAC 1NEF ALLELE: LYMPHOCYTE ACTIVATION & ACUTE DISEASE IN MACAQUE MONKEYS
SIVMAC 1NEF 等位基因:淋巴细胞激活
- 批准号:
3719026 - 财政年份:
- 资助金额:
$ 45.05万 - 项目类别: