Molecular Mechanisms of Bacterial Toxins Targeting the Actin Cytoskeleton

针对肌动蛋白细胞骨架的细菌毒素的分子机制

基本信息

  • 批准号:
    10417139
  • 负责人:
  • 金额:
    $ 31.9万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-09-01 至 2024-05-31
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY/ABSTRACT Dissemination of multidrug-resistant pathogens has undermined the efficiency of antibiotics and urged a more thorough understanding of bacterial pathogenicity. Bacterial pathogens developed various elegant and sophisticated ways to disrupt and usurp the actin cytoskeleton, which plays numerous vital roles in human defense mechanisms. By hijacking the actin cytoskeleton, pathogenic toxins disturb cell morphology, cell motility, phagocytosis, epithelial permeability, and antigen presentation. Being constantly tuned to the host cytoskeleton by co-evolution, they recognize weaknesses in the host defense and represent powerful tools that foster the understanding of the cytoskeleton on molecular and cellular levels. The long-term goals of the project are to decipher molecular and cellular mechanisms of bacterial toxins targeting the actin cytoskeleton and to utilize the obtained knowledge for understanding functions of the actin cytoskeleton in norm and pathology. The current proposal is directly relevant to the NIH mission as it focuses on two families of related toxins, VopF/VopL and VopM/VopV, produced by human pathogens Vibrio cholerae and Vibrio parahaemolyticus. Both are a common cause of seafood poisoning, while the spread of V. parahaemolyticus has rendered it a major health threat worldwide. Both toxin families are known to affect actin, but their pathogenic mechanisms remain poorly understood. Vop toxins are predicted to cooperate, but the understanding of their synergistic effects is impossible without an in-depth understanding of their individual mechanisms. Research strategy: To assure scientific rigor, two toxins in each family will be characterized in parallel using several highly complementary experimental approaches. Specifically, the effects of the toxins on actin dynamics in bulk and at the single-filament level will be combined with cell biology approaches. Cellular targets of the toxins will be identified by a combination of proximity labeling and mass spectrometry. In Specific Aim 1, the methodological gap between molecular and cellular mechanisms of toxicity will be addressed by live-cell imaging at the single-molecule level to reveal the molecular behavior of VopF/L toxins in host cells. The hypothesis will be tested that uncontrolled multidirectional polymerization of actin by the toxins results in disruption of actin polarity. Specific Aim 2 will reveal novel mechanisms employed by VopM/V toxins. The hypothesis will be tested that hijacking the actin cytoskeleton by VopM/V toxins disrupts the ability of the cell to respond to external and internal stimuli leading to compromised cell integrity. Knowledge gained in the course of the proposal will be applied to discover currently unrecognized elements of the actin cytoskeleton involved in the mechanical homeostasis of the intestinal epithelium. The proposed study is both significant and innovative as it fills a major gap in our understanding of the toxicity of several life-threatening pathogens, reveals novel mechanisms for two families of bacterial toxins, and enables the research team to utilize the acquired knowledge by creating tools for deeper understanding of the actin cytoskeleton.
项目总结/文摘

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dmitri Kudryashov其他文献

Dmitri Kudryashov的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dmitri Kudryashov', 18)}}的其他基金

Molecular and cellular mechanisms of the actin cytoskeleton organization and function
肌动蛋白细胞骨架组织和功能的分子和细胞机制
  • 批准号:
    10419950
  • 财政年份:
    2022
  • 资助金额:
    $ 31.9万
  • 项目类别:
Molecular and cellular mechanisms of the actin cytoskeleton organization and function
肌动蛋白细胞骨架组织和功能的分子和细胞机制
  • 批准号:
    10797753
  • 财政年份:
    2022
  • 资助金额:
    $ 31.9万
  • 项目类别:
Molecular Mechanisms of Bacterial Toxins Targeting the Actin Cytoskeleton
针对肌动蛋白细胞骨架的细菌毒素的分子机制
  • 批准号:
    10224947
  • 财政年份:
    2015
  • 资助金额:
    $ 31.9万
  • 项目类别:
Molecular Mechanisms of Bacterial Toxins Targeting the Actin Cytoskeleton
针对肌动蛋白细胞骨架的细菌毒素的分子机制
  • 批准号:
    10052806
  • 财政年份:
    2015
  • 资助金额:
    $ 31.9万
  • 项目类别:
Name Molecular mechanisms of bacterial toxins targeting actin cytoskeleton
名称 靶向肌动蛋白细胞骨架的细菌毒素的分子机制
  • 批准号:
    10632748
  • 财政年份:
    2015
  • 资助金额:
    $ 31.9万
  • 项目类别:
Molecular Mechanisms of Bacterial Toxins Targeting the Actin Cytoskeleton
针对肌动蛋白细胞骨架的细菌毒素的分子机制
  • 批准号:
    10683078
  • 财政年份:
    2015
  • 资助金额:
    $ 31.9万
  • 项目类别:
Molecular Mechanisms of Bacterial Toxins Targeting the Actin Cytoskeleton
针对肌动蛋白细胞骨架的细菌毒素的分子机制
  • 批准号:
    10725070
  • 财政年份:
    2015
  • 资助金额:
    $ 31.9万
  • 项目类别:
Actin oligomers as novel toxins targeting key steps of actin dynamics
肌动蛋白寡聚物作为针对肌动蛋白动力学关键步骤的新型毒素
  • 批准号:
    9134177
  • 财政年份:
    2015
  • 资助金额:
    $ 31.9万
  • 项目类别:

相似国自然基金

由actomyosin介导的集体性细胞迁移对唇腭裂发生的影响的研究
  • 批准号:
    82360313
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Nuclear force feedback as rheostat for actomyosin tension control
核力反馈作为肌动球蛋白张力控制的变阻器
  • 批准号:
    MR/Y001125/1
  • 财政年份:
    2024
  • 资助金额:
    $ 31.9万
  • 项目类别:
    Research Grant
CAREER: Cytokinesis without an actomyosin ring and its coordination with organelle division
职业:没有肌动球蛋白环的细胞分裂及其与细胞器分裂的协调
  • 批准号:
    2337141
  • 财政年份:
    2024
  • 资助金额:
    $ 31.9万
  • 项目类别:
    Continuing Grant
CAREER: Computational and Theoretical Investigation of Actomyosin Contraction Systems
职业:肌动球蛋白收缩系统的计算和理论研究
  • 批准号:
    2340865
  • 财政年份:
    2024
  • 资助金额:
    $ 31.9万
  • 项目类别:
    Continuing Grant
Elucidation of the mechanism by which actomyosin emerges cell chirality
阐明肌动球蛋白出现细胞手性的机制
  • 批准号:
    23K14186
  • 财政年份:
    2023
  • 资助金额:
    $ 31.9万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Deciphering actomyosin contractility regulation during incomplete germ cell division
破译不完全生殖细胞分裂过程中肌动球蛋白收缩性的调节
  • 批准号:
    573067-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 31.9万
  • 项目类别:
    University Undergraduate Student Research Awards
CAREER: Actuating robots with actomyosin active gels
职业:用肌动球蛋白活性凝胶驱动机器人
  • 批准号:
    2144380
  • 财政年份:
    2022
  • 资助金额:
    $ 31.9万
  • 项目类别:
    Continuing Grant
Collaborative Research: Mechanics of Reconstituted Self-Organized Contractile Actomyosin Systems
合作研究:重建自组织收缩肌动球蛋白系统的力学
  • 批准号:
    2201236
  • 财政年份:
    2022
  • 资助金额:
    $ 31.9万
  • 项目类别:
    Standard Grant
Collaborative Research: Mechanics of Reconstituted Self-Organized Contractile Actomyosin Systems
合作研究:重建自组织收缩肌动球蛋白系统的力学
  • 批准号:
    2201235
  • 财政年份:
    2022
  • 资助金额:
    $ 31.9万
  • 项目类别:
    Standard Grant
Coordination of actomyosin and anillo-septin sub-networks of the contractile ring during cytokinesis
胞质分裂过程中收缩环肌动球蛋白和 anillo-septin 子网络的协调
  • 批准号:
    463633
  • 财政年份:
    2022
  • 资助金额:
    $ 31.9万
  • 项目类别:
    Operating Grants
The integrin-dependent B cell actomyosin network drives immune synapse formation and B cell functions
整合素依赖性 B 细胞肌动球蛋白网络驱动免疫突触形成和 B 细胞功能
  • 批准号:
    546047-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 31.9万
  • 项目类别:
    Postdoctoral Fellowships
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了