Machine Learning and Deformable Model-based 4D Characterization of Cardiac Dyssynchrony from MRI
基于机器学习和可变形模型的 MRI 心脏不同步 4D 表征
基本信息
- 批准号:10417165
- 负责人:
- 金额:$ 73.19万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-07-01 至 2024-04-30
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAffectAreaAttentionAutomationCardiacCardiovascular PhysiologyCardiovascular systemClassificationClinicalClinical ResearchComplexConsumptionCoupledDataData AnalysesData SetDiseaseEKG QRS ComplexEchocardiographyElectrocardiogramEvaluationFunctional disorderFundingFutureGadoliniumGoalsGuidelinesHeartHeart DiseasesHeart failureImageImage AnalysisImage EnhancementInfarctionIschemiaLeadLeft ventricular structureLocationMachine LearningMagnetic ResonanceMagnetic Resonance ImagingMeasuresMethodologyMethodsModelingMotionMyocardial IschemiaOutcomeOutputPatient SelectionPatientsPatternPerformancePhysiologyProspective StudiesPumpResearchResearch Project GrantsResolutionSamplingScheduleSelection CriteriaSpeedSwedenTestingTherapeuticTimeTissuesTreatment outcomeUniversitiesVisualizationWidthbasecardiac magnetic resonance imagingcardiac resynchronization therapydeep learningeffective therapyheart functionheart imagingheart motionimage processingimaging approachimaging modalityimprovedimproved outcomelearning strategymachine learning methodmachine learning modelnovelpatient subsetsreconstructionresponsespatiotemporalsuccesstherapy outcomethree dimensional structuretool
项目摘要
Summary/Abstract
In the presence of diseases such as ischemic heart disease (IHD), cardiac dyssynchrony deteriorates cardiac
function and often cannot be treated effectively. However, while imaging methods such as cardiovascular
magnetic resonance (CMR) can provide high quality images of the moving heart, conventional clinical
quantitative analysis of cardiac function is largely limited to global function analysis of the left ventricle (LV),
with only qualitative and subjective characterization of regional function. An obstacle to better quantification of
regional function is the complex 3D structure and motion of the heart wall, which has typically necessitated
time-consuming user-guided processing of the images to carry out the associated 3D-motion analysis.
Recent advances in machine-learning (ML) approaches for image analysis are promising as new means to
speed up the processing of cardiac images, as well as to analyze the underlying regional motion patterns.
However, current Deep ML (DML) approaches to image analysis largely function as “black boxes”, without
clear indications of which features contribute most to the analysis results, thus limiting their clinical utility. In
the initial funded period of this research project, we have been developing integrated approaches to the
segmentation, 3D reconstruction, and analysis of CMR data, with application to the evaluation of cardiac
dyssynchrony. Today, treatment of dyssynchrony in HF with cardiac resynchronization therapy (CRT) leads to
improvement in only ~2/3 patients selected with conventional criteria (usually by electrocardiogram [ECG]).
Our initial results show encouraging results of correlation between MRI evaluation of dyssynchrony and
cardiac resynchronization therapy (CRT) outcomes. In the new proposed research, we will further develop
these methods, with the goal of automating the cardiac analysis methods. This will include the introduction of
new ML-based methods, which will incorporate information on the specific cardiac motion factors that lead to
classification of different disease states in dyssynchrony. Our Hypothesis is that by using these new ML-based
methods for cardiac motion analysis, we will discover and evaluate significant quantitative correlations
between different cardiac dyssynchrony motion patterns and CRT outcomes. Also, late-gadolinium
enhancement (LGE) provides images for infarction visualization. Incorporation of tissue characterization into
the motion-pattern analysis could lead to increased understanding of how infarcted areas affect regional
motion in concert with dyssynchrony. The unearthing of these findings will allow us to validate them in future
clinical studies.
The project will also disseminate our novel, coupled DML and model-based methodology for quantifying and
classifying cardiac motion in diseases affecting regional wall motion. Other research groups can then apply our
tools to specifically study dyssynchrony, as well as other cardiac diseases affecting LV motion.
摘要/文摘
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Subhi AlAref其他文献
Subhi AlAref的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Subhi AlAref', 18)}}的其他基金
Machine Learning and Deformable Model-based 4D Characterization of Cardiac Dyssynchrony from MRI
基于机器学习和可变形模型的 MRI 心脏不同步 4D 表征
- 批准号:
10688155 - 财政年份:2015
- 资助金额:
$ 73.19万 - 项目类别:
Machine Learning and Deformable Model-based 4D Characterization of Cardiac Dyssynchrony from MRI
基于机器学习和可变形模型的 MRI 心脏不同步 4D 表征
- 批准号:
10052934 - 财政年份:2015
- 资助金额:
$ 73.19万 - 项目类别:
相似海外基金
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 73.19万 - 项目类别:
Training Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 73.19万 - 项目类别:
Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 73.19万 - 项目类别:
Standard Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 73.19万 - 项目类别:
Fellowship
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 73.19万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 73.19万 - 项目类别:
Research Grant
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 73.19万 - 项目类别:
Studentship
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 73.19万 - 项目类别:
Operating Grants
New Tendencies of French Film Theory: Representation, Body, Affect
法国电影理论新动向:再现、身体、情感
- 批准号:
23K00129 - 财政年份:2023
- 资助金额:
$ 73.19万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The Protruding Void: Mystical Affect in Samuel Beckett's Prose
突出的虚空:塞缪尔·贝克特散文中的神秘影响
- 批准号:
2883985 - 财政年份:2023
- 资助金额:
$ 73.19万 - 项目类别:
Studentship














{{item.name}}会员




