Dynamic regulatory mechanisms of robust pattern formation in the neural tube
神经管中稳健模式形成的动态调节机制
基本信息
- 批准号:10417127
- 负责人:
- 金额:$ 33.56万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-04-13 至 2023-05-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdultAnimalsBackBuffersCell SeparationCell ShapeCell divisionCellsCodeComplexComputer ModelsCongenital AbnormalityDataDegenerative DisorderDevelopmentDevelopmental BiologyDiagnosisDiffuseDiseaseDoseDysmorphologyEmbryoEmbryologyEquilibriumEvolutionFaceFeedbackFeedsFoundationsFundingGene DosageGene Expression ProfileGenesGeneticGleanGoalsGrantGrowthImageImage AnalysisInvestigationKnowledgeMalignant NeoplasmsMechanicsMethodologyMethodsModelingMolecularNeural Tube DefectsNeural tubeNoiseOperative Surgical ProceduresOrganOrganismPatternPattern FormationPhenotypePositioning AttributeProcessProteinsPublishingQuantitative MicroscopyReproducibilityResearchSHH geneSea UrchinsShapesSignal TransductionSiteSomitesSourceSpecific qualifier valueSystemTestingTimeTissue EngineeringTissuesTo specifyVariantWorkZebrafishbasebeta cateninbiophysical propertiescell typecourse developmentdesigneggembryo stage 2expectationfascinategene regulatory networkinsightinterestlensmathematical modelmechanical pressuremorphogensmutantneural patterningnotch proteinnotochordpreventquantitative imagingrational designresponse
项目摘要
Abstract
The long-term goal of our research is to understand the principles that permit developmental systems to
robustly construct embryos of the correct pattern, shape, and size. Developmental systems face a gamut of
variations from different sources including environmental, genetic, and stochastic, which manifest at multiple
levels from molecules to cells to organs. In the face of these challenges, organisms have been designed
through evolution to buffer the phenotype against these variations in order to robustly achieve a developmental
norm, a process Waddington termed canalization. As our knowledge of the molecular and cellular details of
patterning systems has expanded, there is now the opportunity to understand the systems level mechanisms
that give rise to robust pattern formation. Here we focus on pattern robustness through the lens of scaling and
size control. Scaling is a remarkable process in which the size of a pattern can be adjusted to the available
size of the tissue. Scaling has fascinated and baffled embryologists since the time of Hans Driesch who in
1885 found that when the blastomeres of a two-cell stage sea urchin embryo are separated, the result is not
two partial embryos but rather two complete embryos in which all their pattern is scaled by half. Similar results
have since been found in a variety of organisms, but the surgical manipulations required to generate size-
reduced animals are generally difficult and result in a lot of variability, thus limiting quantitative investigation.
Recently, we have developed a new method for generating zebrafish eggs of different size that is robust and
reproducible. Such embryos have qualitatively normal but scaled patterning and can give rise to viable adults.
At a molecular level we find that most gene expression patterns (e.g. morphogens and their targets) scale with
the tissues they pattern; however, a small subset of genes, the ones that sense tissue size to regulate scaling
(e.g. by interacting with morphogens), do not. Thus, these size altered embryos represent a powerful and
unique method to identify and determine the mechanisms of pattern scaling. Ultimately, tissue size is
determined by balancing the rates of proliferation and differentiation over the course of development. We have
found that the balance of proliferation and differentiation in the neural tube is under negative feedback control
by mechanical pressure/tissue packing. Here we will use a combination of quantitative imaging, molecular and
mechanical perturbations, and computer modeling to determine the systems-level mechanisms that allow: 1)
morphogen patterning to scale to fit the available space, and 2) proliferation and differentiation rates to be
balanced to cause a tissue to grow to fit the available space. These questions will be addressed in the
zebrafish neural tube, but we expect the resulting mechanisms to be widely applicable. Such an integrated
understanding is important for diagnosing and treating birth defects such as neural tube defects and in the
rational design of engineered tissues.
摘要
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Tetrahedral serial multiview microscopy and image fusion for improved resolution and extent in stained zebrafish embryos.
四面体串行多视图显微镜和图像融合可提高染色斑马鱼胚胎的分辨率和范围。
- DOI:10.1002/dvdy.683
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Kroll,JohannaB;Cha,Anna;Oyler-Yaniv,Alon;Lambert,Talley;Swinburne,IanA;Murphy,Andrew;Megason,SeanG
- 通讯作者:Megason,SeanG
Orientation of Turing-like Patterns by Morphogen Gradients and Tissue Anisotropies.
- DOI:10.1016/j.cels.2015.12.001
- 发表时间:2015-12-23
- 期刊:
- 影响因子:9.3
- 作者:Hiscock TW;Megason SG
- 通讯作者:Megason SG
Adhesion-Based Self-Organization in Tissue Patterning.
- DOI:10.1146/annurev-cellbio-120420-100215
- 发表时间:2022-10-06
- 期刊:
- 影响因子:11.3
- 作者:Tsai, Tony Y-C;Garner, Rikki M.;Megason, Sean G.
- 通讯作者:Megason, Sean G.
Surgical Size Reduction of Zebrafish for the Study of Embryonic Pattern Scaling.
用于胚胎模式缩放研究的斑马鱼体型缩小手术。
- DOI:10.3791/59434
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Ishimatsu,Kana;Cha,Anna;Collins,ZachM;Megason,SeanG
- 通讯作者:Megason,SeanG
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SEAN G MEGASON其他文献
SEAN G MEGASON的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SEAN G MEGASON', 18)}}的其他基金
The mechanism of inner ear pressure homeostasis by the endolymphatic sac
内淋巴囊维持内耳压力稳态的机制
- 批准号:
10090586 - 财政年份:2017
- 资助金额:
$ 33.56万 - 项目类别:
The mechanism of inner ear pressure homeostasis by the endolymphatic sac
内淋巴囊维持内耳压力稳态的机制
- 批准号:
9309422 - 财政年份:2017
- 资助金额:
$ 33.56万 - 项目类别:
Dynamic regulatory mechanisms of robust pattern formation in the neural tube
神经管中稳健模式形成的动态调节机制
- 批准号:
10162614 - 财政年份:2015
- 资助金额:
$ 33.56万 - 项目类别:
Dynamic regulatory mechanisms of robust pattern formation in the neural tube
神经管中稳健模式形成的动态调节机制
- 批准号:
9199417 - 财政年份:2015
- 资助金额:
$ 33.56万 - 项目类别:
Dynamic regulatory mechanisms of robust pattern formation in the neural tube
神经管中稳健模式形成的动态调节机制
- 批准号:
9817112 - 财政年份:2015
- 资助金额:
$ 33.56万 - 项目类别:
Streamlined cloning of auditory and vestibular mutants by whole genome sequencing
通过全基因组测序简化听觉和前庭突变体的克隆
- 批准号:
8411127 - 财政年份:2012
- 资助金额:
$ 33.56万 - 项目类别:
Streamlined cloning of auditory and vestibular mutants by whole genome sequencing
通过全基因组测序简化听觉和前庭突变体的克隆
- 批准号:
8224539 - 财政年份:2012
- 资助金额:
$ 33.56万 - 项目类别:
In toto imaging and genomics to decode ear hair cell formation and regeneration
全面成像和基因组学解码耳毛细胞的形成和再生
- 批准号:
8025935 - 财政年份:2010
- 资助金额:
$ 33.56万 - 项目类别:
In toto imaging and genomics to decode ear hair cell formation and regeneration
全面成像和基因组学解码耳毛细胞的形成和再生
- 批准号:
8212556 - 财政年份:2010
- 资助金额:
$ 33.56万 - 项目类别:
In toto imaging and genomics to decode ear hair cell formation and regeneration
全面成像和基因组学解码耳毛细胞的形成和再生
- 批准号:
8413441 - 财政年份:2010
- 资助金额:
$ 33.56万 - 项目类别:
相似海外基金
Co-designing a lifestyle, stop-vaping intervention for ex-smoking, adult vapers (CLOVER study)
为戒烟的成年电子烟使用者共同设计生活方式、戒烟干预措施(CLOVER 研究)
- 批准号:
MR/Z503605/1 - 财政年份:2024
- 资助金额:
$ 33.56万 - 项目类别:
Research Grant
Early Life Antecedents Predicting Adult Daily Affective Reactivity to Stress
早期生活经历预测成人对压力的日常情感反应
- 批准号:
2336167 - 财政年份:2024
- 资助金额:
$ 33.56万 - 项目类别:
Standard Grant
RAPID: Affective Mechanisms of Adjustment in Diverse Emerging Adult Student Communities Before, During, and Beyond the COVID-19 Pandemic
RAPID:COVID-19 大流行之前、期间和之后不同新兴成人学生社区的情感调整机制
- 批准号:
2402691 - 财政年份:2024
- 资助金额:
$ 33.56万 - 项目类别:
Standard Grant
Elucidation of Adult Newt Cells Regulating the ZRS enhancer during Limb Regeneration
阐明成体蝾螈细胞在肢体再生过程中调节 ZRS 增强子
- 批准号:
24K12150 - 财政年份:2024
- 资助金额:
$ 33.56万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Migrant Youth and the Sociolegal Construction of Child and Adult Categories
流动青年与儿童和成人类别的社会法律建构
- 批准号:
2341428 - 财政年份:2024
- 资助金额:
$ 33.56万 - 项目类别:
Standard Grant
Understanding how platelets mediate new neuron formation in the adult brain
了解血小板如何介导成人大脑中新神经元的形成
- 批准号:
DE240100561 - 财政年份:2024
- 资助金额:
$ 33.56万 - 项目类别:
Discovery Early Career Researcher Award
RUI: Evaluation of Neurotrophic-Like properties of Spaetzle-Toll Signaling in the Developing and Adult Cricket CNS
RUI:评估发育中和成年蟋蟀中枢神经系统中 Spaetzle-Toll 信号传导的神经营养样特性
- 批准号:
2230829 - 财政年份:2023
- 资助金额:
$ 33.56万 - 项目类别:
Standard Grant
Usefulness of a question prompt sheet for onco-fertility in adolescent and young adult patients under 25 years old.
问题提示表对于 25 岁以下青少年和年轻成年患者的肿瘤生育力的有用性。
- 批准号:
23K09542 - 财政年份:2023
- 资助金额:
$ 33.56万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Identification of new specific molecules associated with right ventricular dysfunction in adult patients with congenital heart disease
鉴定与成年先天性心脏病患者右心室功能障碍相关的新特异性分子
- 批准号:
23K07552 - 财政年份:2023
- 资助金额:
$ 33.56万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Issue identifications and model developments in transitional care for patients with adult congenital heart disease.
成人先天性心脏病患者过渡护理的问题识别和模型开发。
- 批准号:
23K07559 - 财政年份:2023
- 资助金额:
$ 33.56万 - 项目类别:
Grant-in-Aid for Scientific Research (C)