Systematic elucidation of DNA sequence codes that regulate meiotic recombination
系统阐明调节减数分裂重组的 DNA 序列代码
基本信息
- 批准号:10418872
- 负责人:
- 金额:$ 42.32万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-05-10 至 2026-03-31
- 项目状态:未结题
- 来源:
- 关键词:AffinityAllelesAneuploidyAnimal ModelBase PairingBindingBinding ProteinsBiologicalBiological AssayBiological ModelsCatalysisChromosome MappingChromosome SegregationCodeComplexCongenital AbnormalityCoupledCouplesDNADNA SequenceDNA biosynthesisDNA sequencingDefectDown SyndromeElementsEtiologyFission YeastFrequenciesGenetic RecombinationGenetic TranscriptionGenetic VariationGenomeGoalsHaploidyHistonesInsectaLengthMass Spectrum AnalysisMeasuresMeiosisMeiotic RecombinationMolecularNatural SelectionsNucleosomesNucleotidesOrganismParentsPathway interactionsPopulationPositioning AttributeProcessProteinsRandomizedRegulationRegulatory ElementResearchResolutionSPO11 geneSamplingSequence-Specific DNA Binding ProteinSiteSpecificitySpontaneous abortionTechnologyTestingVertebratesWorkYeast Model Systemchromatin remodelingdiagnostic valueds-DNAexperimental studyforward geneticsfungusimprovedin vivoinnovationinsightnext generationprecise genome editingsegregationtoolyeast genome
项目摘要
Project Summary
Meiosis couples one round of DNA replication, high-frequency recombination between homologs, and two
rounds of chromosome segregation to produce haploid meiotic products. Meiotic recombination is required for
the proper segregation of homologs in meiosis, and it generates genetic diversity required for the process of
natural selection. Interestingly, meiotic recombination is clustered at “hotspots” that regulate its frequency
distribution throughout the genome. Our model system, fission yeast, led to the discovery that discrete DNA
sequence motifs and their binding proteins position the initiation of recombination at hotspots. They do so by
inducing histone PTMs and nucleosome displacement, which promote locally the catalysis of recombination-
initiating dsDNA breaks by the basal recombination machinery (Spo11/Rec12 complex). The general, DNA site-
dependent mechanisms are conserved between species that diverged about 400 million years ago and are
implicated by association to be even more broadly conserved. Remarkably, a screen of short, randomized DNA
sequences generated by base-pair substitutions in the fission yeast genome—which directly analyzed rates of
meiotic recombination in about 46,000 independent clones—identified 202 distinct, short DNA sequence
elements that activate recombination hotspots. These striking findings suggest the most meiotic recombination,
like most transcription, is positioned and regulated by discrete DNA sites and their binding proteins. However,
only five of the 202 hotspot-activating DNA sequences have been defined functionally at single-nucleotide
resolution, and the binding/activator proteins have only been identified for three of the DNA sites. Our long-term
goal is to define systematically the discrete DNA sites and binding/activator protein codes of meiotic
recombination. First, we will use a newly developed tool called “targeted forward genetics” (TFG), which can
generate more than 100,000 independent allele replacements in a single experiment, to define at single-
nucleotide resolution the discrete DNA sequence motifs required for hotspot activity in vivo. Second, we will use
an approach called “DNA affinity capture with mass spectrometry” (DAC-MS), coupled with a tandem mass
tagging (TMT), triple-stage mass spectrometry (MS3) strategy that can analyze many samples simultaneously,
to identify the candidate binding/activator proteins. Candidates will be validated for DNA site-specific binding
and hotspot activation in vivo. Third, we shall test the hypothesis that the different cis-acting regulatory modules
each promote recombination via a common downstream mechanism that involves chromatin remodeling. This
systematic, multifaceted approach will provide new insight into the mechanisms (and discrete codes) that
position meiotic recombination, which has implications for the etiology of meiotic aneuploidies (e.g., Down's
syndrome), for linkage mapping, and for the evolutionary dynamics of genomes.
项目概要
减数分裂耦合一轮 DNA 复制、同源物之间的高频重组以及两
多轮染色体分离以产生单倍体减数分裂产物。减数分裂重组是必需的
减数分裂中同源物的正确分离,并产生减数分裂过程所需的遗传多样性
自然选择。有趣的是,减数分裂重组聚集在调节其频率的“热点”
分布在整个基因组中。我们的模型系统裂殖酵母发现离散 DNA
序列基序及其结合蛋白将重组的起始位置定位在热点处。他们这样做是通过
诱导组蛋白 PTM 和核小体置换,从而促进局部重组的催化 -
通过基础重组机制(Spo11/Rec12 复合体)启动 dsDNA 断裂。一般的DNA位点-
大约 4 亿年前分化的物种之间的依赖机制是保守的,并且
关联意味着更广泛地保守。值得注意的是,短的、随机的 DNA 筛选
裂变酵母基因组中碱基对替换生成的序列,直接分析了
约 46,000 个独立克隆中的减数分裂重组——鉴定出 202 个不同的短 DNA 序列
激活重组热点的元素。这些惊人的发现表明最减数分裂重组,
与大多数转录一样,它是由离散的 DNA 位点及其结合蛋白定位和调节的。然而,
202 个热点激活 DNA 序列中只有 5 个在单核苷酸上进行了功能定义
分辨率,并且仅鉴定出其中三个 DNA 位点的结合/激活蛋白。我们的长期
目标是系统地定义减数分裂的离散 DNA 位点和结合/激活蛋白代码
重组。首先,我们将使用一种新开发的工具,称为“靶向正向遗传学”(TFG),它可以
在一次实验中生成超过 100,000 个独立的等位基因替换,以定义单次
核苷酸解析体内热点活性所需的离散DNA序列基序。其次,我们将使用
一种称为“DNA 亲和捕获质谱法”(DAC-MS) 的方法,与串联质量相结合
标记(TMT),三级质谱(MS3)策略,可以同时分析许多样品,
鉴定候选结合/激活蛋白。将验证候选者的 DNA 位点特异性结合
和体内热点激活。第三,我们将检验以下假设:不同的顺式作用调节模块
每个都通过涉及染色质重塑的共同下游机制促进重组。这
系统的、多方面的方法将为机制(和离散代码)提供新的见解
减数分裂位置重组,这对减数分裂非整倍体的病因学有影响(例如,唐氏
综合征),用于连锁图谱和基因组的进化动力学。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wayne P Wahls其他文献
Wayne P Wahls的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wayne P Wahls', 18)}}的其他基金
Systematic elucidation of DNA sequence codes that regulate meiotic recombination
系统阐明调节减数分裂重组的 DNA 序列代码
- 批准号:
10618255 - 财政年份:2022
- 资助金额:
$ 42.32万 - 项目类别:
Combinatoial CREB/ATF dimers and cellular growth control
CREB/ATF二聚体组合和细胞生长控制
- 批准号:
6775629 - 财政年份:2001
- 资助金额:
$ 42.32万 - 项目类别:
REGULATION OF MEIOTIC DEVELOPMENT BY MTS1-MTS2 PROTEIN
MTS1-MTS2 蛋白对减数分裂发育的调节
- 批准号:
6227514 - 财政年份:2001
- 资助金额:
$ 42.32万 - 项目类别:
REGULATION OF MEIOTIC DEVELOPMENT BY MTS1-MTS2 PROTEIN
MTS1-MTS2 蛋白对减数分裂发育的调节
- 批准号:
6628931 - 财政年份:2001
- 资助金额:
$ 42.32万 - 项目类别:
相似海外基金
Linkage of HIV amino acid variants to protective host alleles at CHD1L and HLA class I loci in an African population
非洲人群中 HIV 氨基酸变异与 CHD1L 和 HLA I 类基因座的保护性宿主等位基因的关联
- 批准号:
502556 - 财政年份:2024
- 资助金额:
$ 42.32万 - 项目类别:
Olfactory Epithelium Responses to Human APOE Alleles
嗅觉上皮对人类 APOE 等位基因的反应
- 批准号:
10659303 - 财政年份:2023
- 资助金额:
$ 42.32万 - 项目类别:
Deeply analyzing MHC class I-restricted peptide presentation mechanistics across alleles, pathways, and disease coupled with TCR discovery/characterization
深入分析跨等位基因、通路和疾病的 MHC I 类限制性肽呈递机制以及 TCR 发现/表征
- 批准号:
10674405 - 财政年份:2023
- 资助金额:
$ 42.32万 - 项目类别:
An off-the-shelf tumor cell vaccine with HLA-matching alleles for the personalized treatment of advanced solid tumors
具有 HLA 匹配等位基因的现成肿瘤细胞疫苗,用于晚期实体瘤的个性化治疗
- 批准号:
10758772 - 财政年份:2023
- 资助金额:
$ 42.32万 - 项目类别:
Identifying genetic variants that modify the effect size of ApoE alleles on late-onset Alzheimer's disease risk
识别改变 ApoE 等位基因对迟发性阿尔茨海默病风险影响大小的遗传变异
- 批准号:
10676499 - 财政年份:2023
- 资助金额:
$ 42.32万 - 项目类别:
New statistical approaches to mapping the functional impact of HLA alleles in multimodal complex disease datasets
绘制多模式复杂疾病数据集中 HLA 等位基因功能影响的新统计方法
- 批准号:
2748611 - 财政年份:2022
- 资助金额:
$ 42.32万 - 项目类别:
Studentship
Recessive lethal alleles linked to seed abortion and their effect on fruit development in blueberries
与种子败育相关的隐性致死等位基因及其对蓝莓果实发育的影响
- 批准号:
22K05630 - 财政年份:2022
- 资助金额:
$ 42.32万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Genome and epigenome editing of induced pluripotent stem cells for investigating osteoarthritis risk alleles
诱导多能干细胞的基因组和表观基因组编辑用于研究骨关节炎风险等位基因
- 批准号:
10532032 - 财政年份:2022
- 资助金额:
$ 42.32万 - 项目类别:
Investigating the Effect of APOE Alleles on Neuro-Immunity of Human Brain Borders in Normal Aging and Alzheimer's Disease Using Single-Cell Multi-Omics and In Vitro Organoids
使用单细胞多组学和体外类器官研究 APOE 等位基因对正常衰老和阿尔茨海默病中人脑边界神经免疫的影响
- 批准号:
10525070 - 财政年份:2022
- 资助金额:
$ 42.32万 - 项目类别:
Leveraging the Evolutionary History to Improve Identification of Trait-Associated Alleles and Risk Stratification Models in Native Hawaiians
利用进化历史来改进夏威夷原住民性状相关等位基因的识别和风险分层模型
- 批准号:
10689017 - 财政年份:2022
- 资助金额:
$ 42.32万 - 项目类别:














{{item.name}}会员




