Mutational signature analysis: methods and applications to the clinic
突变特征分析:方法和临床应用
基本信息
- 批准号:10418967
- 负责人:
- 金额:$ 45.32万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-05-05 至 2027-04-30
- 项目状态:未结题
- 来源:
- 关键词:AdoptedAlgorithmsAttentionBiologicalBiological AssayBiological MarkersBiological ProcessCancer PatientCatalogsCellsCharacteristicsClassificationClinicClinicalClinical DataCollaborationsCommunitiesComputing MethodologiesCytidine DeaminaseDNADNA Double Strand BreakDNA Sequence AlterationDNA sequencingDataData SetDetectionDevelopmentDiseaseEnsureEvolutionFormulationGenesGenomeGenomic InstabilityGoalsImmuneImmunotherapyLeadMalignant NeoplasmsMethodologyMethodsMismatch RepairMismatch Repair DeficiencyModelingMonitoring for RecurrenceMutagenesisMutationMutation DetectionPatientsPatternPoint MutationProcessRefitSamplingScreening for cancerSelection for TreatmentsSensitivity and SpecificitySingle base substitutionSomatic MutationSourceSystemTechniquesVariantWorkbasebrca geneclinical applicationclinical carecohortdata standardsdetection methodexomeexome sequencinggene panelgenome sequencinghomologous recombinationimmune checkpoint blockadeimprovedinhibitorinsertion/deletion mutationneoantigensnovelpatient biomarkerspatient stratificationpatient subsetspredict clinical outcomepredictive modelingprofiles in patientsrepairedreplication stressresistance mechanismresponders and non-respondersresponsesequencing platformsimulationsingle-cell RNA sequencingtooltranscriptomicstumortumor DNAtumor heterogeneitywhole genome
项目摘要
PROJECT SUMMARY
Mutational signature analysis is a recent analytical approach for interpreting somatic mutations in the genome.
It utilizes the sequence context of point mutations as well as the size and type of copy number and structural
aberrations to decompose the observed mutational patterns into distinct 'signatures', some of which have been
associated with specific biological processes. In this project, we will develop more robust and sensitive com-
putational methods for mutational signature analysis and apply them to several clinically important questions.
Our initial work has attracted a great deal of attention from clinicians, and we will analyze data from several
clinical cohorts in close collaboration. In Aim 1, we will build upon our previous work to devise a method
that can identify homologous recombination deficiency in cancer patients profiled on gene panels. Although
whole-genome sequencing offers several advantages, gene panel sequencing remains as a pivotal platform in
clinical care. Our method will enable signature analysis for gene panels from which only a small number of
mutations can be observed. We will incorporate additional sources of information and identify biomarkers for
patient stratification. In Aim 2, we will investigate other types of genomic instability such as mismatch repair
deficiency, replication stress, and APOBEC mutagenesis. For example, although patients with mismatch repair
deficiency generally respond better to immunotherapy, there is a considerable variation across patients. We
will use mutational signatures to identify a subset of patients that respond better. In Aim 3, we will extend our
method to data from circulating tumor DNA and single cell RNA sequencing to enable signature-based predictive
modelling. In Aim 4, we will develop a generalized analytical framework for whole-genome and whole-exome
signature analysis that will overcome the shortcomings of current approaches. We will use this new framework to
build a high-quality reference catalog for the community.
项目概要
突变特征分析是解释基因组体细胞突变的最新分析方法。
它利用点突变的序列背景以及拷贝数和结构的大小和类型
畸变将观察到的突变模式分解为不同的“特征”,其中一些已被
与特定的生物过程相关。在这个项目中,我们将开发更强大、更敏感的组件
突变特征分析的推定方法并将其应用于几个临床重要问题。
我们的初步工作引起了临床医生的极大关注,我们将分析几个方面的数据
临床队列密切合作。在目标 1 中,我们将在之前的工作基础上设计一种方法
可以识别基因组上癌症患者的同源重组缺陷。虽然
全基因组测序具有多种优势,基因组测序仍然是一个关键平台
临床护理。我们的方法将能够对基因组进行特征分析,其中只有一小部分
可以观察到突变。我们将纳入额外的信息来源并确定生物标志物
患者分层。在目标 2 中,我们将研究其他类型的基因组不稳定性,例如错配修复
缺陷、复制压力和 APOBEC 突变。例如,虽然患有错配修复的患者
缺乏症通常对免疫疗法有更好的反应,但患者之间存在很大差异。我们
将使用突变特征来识别反应更好的患者子集。在目标 3 中,我们将扩展我们的
方法从循环肿瘤 DNA 和单细胞 RNA 测序中获取数据,以实现基于特征的预测
造型。在目标 4 中,我们将开发一个全基因组和全外显子组的通用分析框架
签名分析将克服当前方法的缺点。我们将使用这个新框架
为社区建立高质量的参考目录。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Peter J Park其他文献
Identification of regions in the HOX cluster that can confer repression in a Polycomb-dependent manner
- DOI:
10.1186/1756-8935-6-s1-p86 - 发表时间:
2013-03-01 - 期刊:
- 影响因子:3.500
- 作者:
Caroline J Woo;Peter V Kharchenko;Laurence Daheron;Peter J Park;Robert E Kingston - 通讯作者:
Robert E Kingston
Peter J Park的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Peter J Park', 18)}}的其他基金
Data Analysis Center for Somatic Mosaicism Across Human Tissues Network
人体组织网络体细胞镶嵌数据分析中心
- 批准号:
10662721 - 财政年份:2023
- 资助金额:
$ 45.32万 - 项目类别:
Development of an Efficient High Throughput Technique for the Identification of High-Impact Non-Coding Somatic Variants Across Multiple Tissue Types
开发一种高效的高通量技术,用于鉴定跨多种组织类型的高影响力非编码体细胞变异
- 批准号:
10662860 - 财政年份:2023
- 资助金额:
$ 45.32万 - 项目类别:
Mutational signature analysis: methods and applications to the clinic
突变特征分析:方法和临床应用
- 批准号:
10618248 - 财政年份:2022
- 资助金额:
$ 45.32万 - 项目类别:
Interoperability and Collaboration with the Common Fund Data Ecosystem to Improve Utility of 4DN Data
与共同基金数据生态系统的互操作性和协作,以提高 4DN 数据的实用性
- 批准号:
10683513 - 财政年份:2021
- 资助金额:
$ 45.32万 - 项目类别:
Interoperability and Collaboration with the Common Fund Data Ecosystem to Improve Utility of 4DN Data
与共同基金数据生态系统的互操作性和协作,以提高 4DN 数据的实用性
- 批准号:
10406676 - 财政年份:2021
- 资助金额:
$ 45.32万 - 项目类别:
Interoperability and Collaboration with the Common Fund Data Ecosystem to Improve Utility of 4DN Data
与共同基金数据生态系统的互操作性和协作,以提高 4DN 数据的实用性
- 批准号:
10907133 - 财政年份:2021
- 资助金额:
$ 45.32万 - 项目类别:
Identification of Transposable Element Insertions in the Kids First Data
Kids First 数据中转座元件插入的识别
- 批准号:
10172875 - 财政年份:2020
- 资助金额:
$ 45.32万 - 项目类别:
1/2-Somatic mosaicism and autism spectrum disorder
1/2-躯体镶嵌和自闭症谱系障碍
- 批准号:
9246015 - 财政年份:2016
- 资助金额:
$ 45.32万 - 项目类别:
Linking sequence and copy number variation to eye diseases by regulatory genomics
通过调控基因组学将序列和拷贝数变异与眼部疾病联系起来
- 批准号:
9044785 - 财政年份:2016
- 资助金额:
$ 45.32万 - 项目类别:
Visual Analysis of Genomic and Clinical Data from Large Patient Cohorts
对大型患者队列的基因组和临床数据进行可视化分析
- 批准号:
8875824 - 财政年份:2015
- 资助金额:
$ 45.32万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 45.32万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 45.32万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 45.32万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 45.32万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 45.32万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 45.32万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 45.32万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 45.32万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 45.32万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 45.32万 - 项目类别:
Continuing Grant














{{item.name}}会员




