Visual Analysis of Genomic and Clinical Data from Large Patient Cohorts
对大型患者队列的基因组和临床数据进行可视化分析
基本信息
- 批准号:8875824
- 负责人:
- 金额:$ 50.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-06-01 至 2018-05-31
- 项目状态:已结题
- 来源:
- 关键词:AccountingAddressAdoptedAffectAlgorithmsApplied ResearchBig DataBiologicalBiological SciencesCharacteristicsChromosomesClinicalClinical DataClinical ResearchCodon NucleotidesCohort StudiesCollaborationsCommunitiesComplexComputational BiologyDNA MethylationDNA Sequence AlterationDataData AnalysesData SetDevelopmentDiagnosisDiagnosticDiseaseEngineeringEnsureFundingFutureGeneticGenomicsHumanImageryIndividualInternetKnowledgeLaboratoriesMaintenanceMalignant NeoplasmsMeasurementMedicalMedical RecordsMethodsMolecularMutationOnline SystemsPatientsPatternPersonal SatisfactionPrincipal InvestigatorProcessRare DiseasesRecording of previous eventsRecordsResearch InfrastructureResearch PersonnelResourcesSample SizeSamplingSchoolsScientistSoftware ToolsSystemTechniquesTestingThe Cancer Genome AtlasTimeTranslationsVisualWorkbasecancer genomicsclinical practiceclinical sequencingcohortcostdata acquisitiondata managementdata visualizationdesigndisorder subtypeepigenomicsgenome sequencinggenome-widegenomic toolsimprovedinsightmRNA Expressionmedical schoolsmeetingsneglectnovelnovel strategiesopen sourceoutcome forecastpublic health relevanceresearch studytool
项目摘要
DESCRIPTION (provided by applicant): Comprehensive large cohort studies that collect a wide variety of genomic, epigenomic and clinical data are increasingly commonplace in the life sciences. While large sample sizes are still limited to well-funded consortia, the continuous cost decrease of data acquisition will allow individual labs to create larger datasets with fewer resources and will make genomic data analysis for the diagnosis of patients feasible. While this opens unprecedented possibilities for understanding the molecular processes underlying many diseases, it also poses challenges, especially with respect to data analysis and data management. There is a high demand for better analysis and visualization methods to keep pace with the increasing amount of data. At the same time, these data acquisition methods will also revolutionize the discovery and diagnosis of rare diseases. The integration of genomics data with extensive patient records and large patient cohorts promises diagnosis and potentially treatment to those with rare or undiagnosed diseases. In this project we will create novel methods and provide unique software tools that will meet this significant demand. Our methods are a departure from existing visualization approaches that are typically focused on visualizing particular molecular and clinical data types while neglecting the context of a patient cohort. Our proposed approach is distinguished from previous work by taking into account these complex relationships between patients in a cohort. In addition, our approach is the first to integrate genomic data at all scales while supporting the interactive analysis, creation and refinement of patient subsets. We will address this challenge by (1) developing visualization techniques, deeply integrated with algorithmic support, to identify and characterize disease subtypes. Specifically, we will develop methods that will allow clinical and experimental investigators to go
beyond analyzing simple relationships, creating the potential to reveal the less obvious and indirect molecular causes of many diseases. (2) We will create novel visualizations that employ algorithms to select and display important genomic characteristics and the patient's clinical history to study and diagnose rare diseases. (3) We will create a framework to support the development of web-based visual exploration tools, which we will use to create the visualizations for subtype and rare disease analysis. Additionally, we will also make this framework available for the community to use for other tools. This will allow future projects to produce visual analysis methods that scale to the challenges of big data with less engineering overhead. This project will be a close collaboration between a team of computational (epi) genomics and cancer researchers in the laboratory of the Principal Investigator Peter Park at the Harvard Medical School and data visualization experts in the laboratory of the Co-Investigator Hanspeter Pfister at the Harvard School of Engineering and Applied Sciences. This team possesses the unique combination of expertise that is required to successfully address the challenges that motivate this application.
描述(由申请人提供):收集各种基因组、表观基因组和临床数据的综合性大型队列研究在生命科学中越来越常见。虽然大样本量仍然局限于资金充足的财团,但数据采集成本的持续下降将使各个实验室能够以更少的资源创建更大的数据集,并使用于患者诊断的基因组数据分析变得可行。虽然这为理解许多疾病的分子过程提供了前所未有的可能性,但也带来了挑战,特别是在数据分析和数据管理方面。人们对更好的分析和可视化方法有很高的需求,以跟上不断增长的数据量。同时,这些数据采集方法也将为罕见病的发现和诊断带来革命性的变化。将基因组学数据与大量患者记录和大型患者队列相结合,有望对罕见或未确诊疾病的患者进行诊断和潜在治疗。在这个项目中,我们将创造新的方法,并提供独特的软件工具,将满足这一重大需求。我们的方法与现有的可视化方法不同,现有的可视化方法通常专注于可视化特定的分子和临床数据类型,而忽略了患者队列的背景。我们提出的方法是区别于以往的工作,考虑到这些复杂的关系,患者之间的队列。此外,我们的方法是第一个整合所有尺度的基因组数据,同时支持交互式分析,创建和细化患者子集。我们将通过以下方式应对这一挑战:(1)开发可视化技术,与算法支持深度集成,以识别和表征疾病亚型。具体来说,我们将开发方法,使临床和实验研究人员去
除了分析简单的关系,创造了揭示许多疾病的不太明显和间接的分子原因的潜力。(2)我们将创建新的可视化,采用算法来选择和显示重要的基因组特征和患者的临床病史,以研究和诊断罕见疾病。(3)我们将创建一个框架来支持基于Web的可视化探索工具的开发,我们将使用该工具来创建亚型和罕见疾病分析的可视化。此外,我们还将为社区提供此框架,以用于其他工具。这将使未来的项目能够产生可视化的分析方法,以更少的工程开销来应对大数据的挑战。该项目将是哈佛医学院首席研究员Peter Park实验室的计算(epi)基因组学和癌症研究人员团队与哈佛工程与应用科学学院联合研究员Hanspeter Pfister实验室的数据可视化专家之间的密切合作。该团队拥有独特的专业知识组合,能够成功应对推动该应用程序的挑战。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Peter J Park其他文献
Identification of regions in the HOX cluster that can confer repression in a Polycomb-dependent manner
- DOI:
10.1186/1756-8935-6-s1-p86 - 发表时间:
2013-03-01 - 期刊:
- 影响因子:3.500
- 作者:
Caroline J Woo;Peter V Kharchenko;Laurence Daheron;Peter J Park;Robert E Kingston - 通讯作者:
Robert E Kingston
Peter J Park的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Peter J Park', 18)}}的其他基金
Data Analysis Center for Somatic Mosaicism Across Human Tissues Network
人体组织网络体细胞镶嵌数据分析中心
- 批准号:
10662721 - 财政年份:2023
- 资助金额:
$ 50.8万 - 项目类别:
Development of an Efficient High Throughput Technique for the Identification of High-Impact Non-Coding Somatic Variants Across Multiple Tissue Types
开发一种高效的高通量技术,用于鉴定跨多种组织类型的高影响力非编码体细胞变异
- 批准号:
10662860 - 财政年份:2023
- 资助金额:
$ 50.8万 - 项目类别:
Mutational signature analysis: methods and applications to the clinic
突变特征分析:方法和临床应用
- 批准号:
10418967 - 财政年份:2022
- 资助金额:
$ 50.8万 - 项目类别:
Mutational signature analysis: methods and applications to the clinic
突变特征分析:方法和临床应用
- 批准号:
10618248 - 财政年份:2022
- 资助金额:
$ 50.8万 - 项目类别:
Interoperability and Collaboration with the Common Fund Data Ecosystem to Improve Utility of 4DN Data
与共同基金数据生态系统的互操作性和协作,以提高 4DN 数据的实用性
- 批准号:
10683513 - 财政年份:2021
- 资助金额:
$ 50.8万 - 项目类别:
Interoperability and Collaboration with the Common Fund Data Ecosystem to Improve Utility of 4DN Data
与共同基金数据生态系统的互操作性和协作,以提高 4DN 数据的实用性
- 批准号:
10406676 - 财政年份:2021
- 资助金额:
$ 50.8万 - 项目类别:
Interoperability and Collaboration with the Common Fund Data Ecosystem to Improve Utility of 4DN Data
与共同基金数据生态系统的互操作性和协作,以提高 4DN 数据的实用性
- 批准号:
10907133 - 财政年份:2021
- 资助金额:
$ 50.8万 - 项目类别:
Identification of Transposable Element Insertions in the Kids First Data
Kids First 数据中转座元件插入的识别
- 批准号:
10172875 - 财政年份:2020
- 资助金额:
$ 50.8万 - 项目类别:
1/2-Somatic mosaicism and autism spectrum disorder
1/2-躯体镶嵌和自闭症谱系障碍
- 批准号:
9246015 - 财政年份:2016
- 资助金额:
$ 50.8万 - 项目类别:
Linking sequence and copy number variation to eye diseases by regulatory genomics
通过调控基因组学将序列和拷贝数变异与眼部疾病联系起来
- 批准号:
9044785 - 财政年份:2016
- 资助金额:
$ 50.8万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 50.8万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 50.8万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 50.8万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 50.8万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 50.8万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 50.8万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 50.8万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 50.8万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 50.8万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 50.8万 - 项目类别:
Research Grant














{{item.name}}会员




