MOMI Data Management
MOMI数据管理
基本信息
- 批准号:10420111
- 负责人:
- 金额:$ 47.08万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-04-19 至 2027-03-31
- 项目状态:未结题
- 来源:
- 关键词:2019-nCoVAlgorithmsAllograftingAnti-Inflammatory AgentsAtlasesBiologicalBiologyCOVID-19 pandemicCategoriesChronologyClinicalCluster AnalysisCommunicable DiseasesComplexComputer AnalysisComputer ModelsConsultationsCustomDataData AnalysesData SetDevelopmentDisciplineDiseaseEngineeringEquilibriumEtiologyFetal GrowthFoundationsGlobal AwarenessGoalsImmuneImmune responseImmune systemImmunityImmunologicsImmunologyImmunosuppressionIndividualInfectionInfertilityInflammatoryInterventionIntuitionInvestigationLactationMachine LearningMaternal HealthMaternal-fetal medicineMaternally-Acquired ImmunityMathematical BiologyMathematicsMeasurementMeasuresMethodsModelingNatureNewborn InfantOrganPregnancyPregnancy TrimestersProcessPropertyPublicationsRecording of previous eventsResearch PersonnelSamplingShapesStatistical Data InterpretationSupervisionSystemSystems BiologyTechniquesTimeVaccinationVaccinesWomanWorkbasecell typecomputer frameworkcomputer sciencedata managementdifferential expressiondiverse datafetalheterogenous dataimplantationimprovedin vivoinsightmaternal vaccinationmultidisciplinarymultiple omicsneonatal healthnovelnovel strategiesnovel therapeuticsnovel vaccinesoperationpathogenpredicting responsepregnantprogramsprophylactictherapeutic vaccinetoolvaccine platformvaccine-induced immunityvaccinology
项目摘要
Data Management and Analysis Core: Summary
While previously regarded as a state of immunosuppression, emerging immunological studies conversely
suggest that immune system shifts throughout pregnancy from inflammatory to anti-inflammatory, shifting to
balance implantation and growth of the fetal allograft. Instead, OMIC level investigation has begun to point to an
immunological clock that appears throughout pregnancy that may drive this balance between fetal-protection
and maternal immunity- however the specific mechanisms that contribute to this biology and whether the same
changes occur simultaneously throughout the immune system is incompletely understood. Thus, here we aim to
develop an OMIC level data – integrating measures across the system and using vaccines as a mechanism to
perturb the system in vivo. These datasets will be captured across gestation for the first time, building the
foundational data to understand the immunological switches that occur throughout pregnancy to improve
maternal health, develop novel strategies to treat infertility, to guide diseases requiring improved tolerance, as
well as to improve neonatal health. In addition to assisting Project investigators with application of traditional
systems biology mathematical tools, such as differential expression, enrichment, and clustering analysis, the
Data Management and Analysis Core (DMAC) will develop and employ a spectrum of computational
approaches arising from the realms of engineering and computer science, including machine learning
techniques. We will emphasize modeling frameworks in which multiple features are used concomitantly for
explanation or prediction of responses, as multi-variate correlates of protection. Moreover, these frameworks
can examine how these multiple variables interact, offering potential advances in biological insights concerning
mechanism. Both supervised and unsupervised classes of algorithms will be utilized, permitting two different
perspectives on identifying correlates. The efforts of this Core will be intimately integrated into each of the
experimental Projects.
数据管理和分析核心:总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DOUGLAS A LAUFFENBURGER其他文献
DOUGLAS A LAUFFENBURGER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DOUGLAS A LAUFFENBURGER', 18)}}的其他基金
Quantitative and functional characterization of therapeutic resistance in cancer
癌症治疗耐药性的定量和功能表征
- 批准号:
10162303 - 财政年份:2017
- 资助金额:
$ 47.08万 - 项目类别:
Quantitative and functional characterization of therapeutic resistance in cancer
癌症治疗耐药性的定量和功能表征
- 批准号:
9925049 - 财政年份:2017
- 资助金额:
$ 47.08万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 47.08万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 47.08万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 47.08万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 47.08万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 47.08万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 47.08万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 47.08万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 47.08万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 47.08万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 47.08万 - 项目类别:
Continuing Grant














{{item.name}}会员




