Endothelial cell autonomous mechanisms of blood vessel diameter control
血管直径控制的内皮细胞自主机制
基本信息
- 批准号:10421065
- 负责人:
- 金额:$ 43.56万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-06-15 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:1-Phosphatidylinositol 3-KinaseActomyosinAddressAffectApicalBasal CellBiological AssayBiomechanicsBloodBlood VesselsBody partCaliberCell CountCell PolarityCell ShapeCell SizeCellsConceptionsCytoskeletonDataDefectDevelopmentDimensionsDiseaseDominant-Negative MutationEmbryoEmbryonic DevelopmentEndoglinEndothelial CellsEndotheliumEventFailureFeedbackGenesHumanImmunohistochemistryKnowledgeLeadMeasuresMembraneMolecularMutationMyosin Light Chain KinaseNutrientOxygenPARD6A genePIK3CA genePathway interactionsPatientsPatternPharmacologyPhenotypePropertyProteinsProtocols documentationReporterReportingShapesShunt DeviceSignal TransductionSmooth Muscle MyocytesTestingTimeTransforming Growth Factor betaTransgenic OrganismsTumor Suppressor ProteinsZebrafishapical membranebasolateral membranecell dimensionconstrictioncurative treatmentsearly onsetimaging approachinsightmalformationmembrane polaritymutantoverexpressionpreventtargeted treatment
项目摘要
Abstract
Blood vessels are important for the distribution of nutrients and oxygen to all parts of our bodies. A hierarchical
organization of differently sized blood vessels is key for their functionality. Several diseases can affect blood
vessel topologies and diameters, leading to vascular malformations in humans. Previous reports suggested that
increases in blood vessel diameters can be caused by increases in endothelial cell numbers, the cells of the
blood vessels’ inner lining. We established an imaging approach in zebrafish embryos that allows us to precisely
analyze endothelial cell numbers in addition to their shapes and sizes during embryonic development.
Surprisingly, we found that initially the shapes and sizes of endothelial cells were more critical for blood vessel
diameter control than their numbers and that endothelial cell numbers increased only at later stages of vascular
malformation establishment. Importantly, we also found that endothelial shapes and sizes were affected in
mutants of several different genes causing vascular malformations. However, to date it is not known how these
genes affect cell shapes and sizes and how this would impact blood vessel diameters. The aims in this proposal
address this question by analyzing the cellular and molecular components influencing cell shapes and sizes. In
aim 1 we will investigate how the cytoskeleton and its contractile properties affect cellular dimensions and how
this might feedback on blood vessel diameters. We will also investigate whether changing the cytoskeleton and
hence endothelial cell contractility can rescue vascular malformations. In aim 2 we plan to interrogate the
influence of endothelial cell polarity on blood vessel diameters. Endothelial cells have an apical, facing the blood
vessel lumen, and a basolateral membrane domain. At present, we do not know how mutations causing vascular
malformations change apical-basal polarity and how these changes would affect blood vessel diameters. We will
test for these possibilities by examining apical and basolateral polarity in different zebrafish mutants that develop
vascular malformations. We will also investigate how changing apical-basolateral polarity will affect endothelial
cell shapes and sizes in these mutants. Ultimately, we aim to reverse vascular malformations through normalizing
apical-basolateral polarity and endothelial cell contractility and thereby endothelial cell shapes prior to increases
in endothelial cell numbers.
抽象的
血管对于将营养和氧气分配到我们身体的各个部位很重要。分层的
不同大小血管的组织对其功能至关重要。多种疾病都会影响血液
血管拓扑和直径,导致人类血管畸形。此前的报道表明
血管直径的增加可能是由于内皮细胞数量的增加引起的。
血管的内壁。我们在斑马鱼胚胎中建立了一种成像方法,使我们能够精确地
分析胚胎发育过程中内皮细胞的数量以及形状和大小。
令人惊讶的是,我们发现最初内皮细胞的形状和大小对于血管的形成更为关键
直径控制大于其数量,并且内皮细胞数量仅在血管形成的后期阶段增加
畸形建立。重要的是,我们还发现内皮形状和大小受到影响
导致血管畸形的几种不同基因的突变体。然而,迄今为止,尚不清楚这些
基因影响细胞的形状和大小,以及这将如何影响血管直径。本提案的目标
通过分析影响细胞形状和大小的细胞和分子成分来解决这个问题。在
目标 1 我们将研究细胞骨架及其收缩特性如何影响细胞尺寸以及如何
这可能会反馈血管直径。我们还将研究是否改变细胞骨架和
因此,内皮细胞的收缩力可以挽救血管畸形。在目标 2 中,我们计划询问
内皮细胞极性对血管直径的影响。内皮细胞有一个顶端,面向血液
血管腔和基底外侧膜域。目前,我们还不知道突变是如何引起血管的
畸形会改变顶端-基底极性以及这些变化如何影响血管直径。我们将
通过检查不同斑马鱼突变体的顶端和基底外侧极性来测试这些可能性
血管畸形。我们还将研究改变顶端-基底外侧极性将如何影响内皮细胞
这些突变体的细胞形状和大小。最终,我们的目标是通过正常化来逆转血管畸形
顶端-基底外侧极性和内皮细胞收缩性,从而增加之前的内皮细胞形状
在内皮细胞数量中。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Arndt Friedrich Siekmann其他文献
Arndt Friedrich Siekmann的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Arndt Friedrich Siekmann', 18)}}的其他基金
Endothelial cell autonomous mechanisms of blood vessel diameter control
血管直径控制的内皮细胞自主机制
- 批准号:
10191040 - 财政年份:2020
- 资助金额:
$ 43.56万 - 项目类别:
Endothelial cell autonomous mechanisms of blood vessel diameter control
血管直径控制的内皮细胞自主机制
- 批准号:
10630835 - 财政年份:2020
- 资助金额:
$ 43.56万 - 项目类别:
相似国自然基金
由actomyosin介导的集体性细胞迁移对唇腭裂发生的影响的研究
- 批准号:82360313
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
Nuclear force feedback as rheostat for actomyosin tension control
核力反馈作为肌动球蛋白张力控制的变阻器
- 批准号:
MR/Y001125/1 - 财政年份:2024
- 资助金额:
$ 43.56万 - 项目类别:
Research Grant
CAREER: Cytokinesis without an actomyosin ring and its coordination with organelle division
职业:没有肌动球蛋白环的细胞分裂及其与细胞器分裂的协调
- 批准号:
2337141 - 财政年份:2024
- 资助金额:
$ 43.56万 - 项目类别:
Continuing Grant
CAREER: Computational and Theoretical Investigation of Actomyosin Contraction Systems
职业:肌动球蛋白收缩系统的计算和理论研究
- 批准号:
2340865 - 财政年份:2024
- 资助金额:
$ 43.56万 - 项目类别:
Continuing Grant
Elucidation of the mechanism by which actomyosin emerges cell chirality
阐明肌动球蛋白出现细胞手性的机制
- 批准号:
23K14186 - 财政年份:2023
- 资助金额:
$ 43.56万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Deciphering actomyosin contractility regulation during incomplete germ cell division
破译不完全生殖细胞分裂过程中肌动球蛋白收缩性的调节
- 批准号:
573067-2022 - 财政年份:2022
- 资助金额:
$ 43.56万 - 项目类别:
University Undergraduate Student Research Awards
CAREER: Actuating robots with actomyosin active gels
职业:用肌动球蛋白活性凝胶驱动机器人
- 批准号:
2144380 - 财政年份:2022
- 资助金额:
$ 43.56万 - 项目类别:
Continuing Grant
Collaborative Research: Mechanics of Reconstituted Self-Organized Contractile Actomyosin Systems
合作研究:重建自组织收缩肌动球蛋白系统的力学
- 批准号:
2201236 - 财政年份:2022
- 资助金额:
$ 43.56万 - 项目类别:
Standard Grant
Collaborative Research: Mechanics of Reconstituted Self-Organized Contractile Actomyosin Systems
合作研究:重建自组织收缩肌动球蛋白系统的力学
- 批准号:
2201235 - 财政年份:2022
- 资助金额:
$ 43.56万 - 项目类别:
Standard Grant
Coordination of actomyosin and anillo-septin sub-networks of the contractile ring during cytokinesis
胞质分裂过程中收缩环肌动球蛋白和 anillo-septin 子网络的协调
- 批准号:
463633 - 财政年份:2022
- 资助金额:
$ 43.56万 - 项目类别:
Operating Grants
The integrin-dependent B cell actomyosin network drives immune synapse formation and B cell functions
整合素依赖性 B 细胞肌动球蛋白网络驱动免疫突触形成和 B 细胞功能
- 批准号:
546047-2020 - 财政年份:2021
- 资助金额:
$ 43.56万 - 项目类别:
Postdoctoral Fellowships














{{item.name}}会员




