Early Diagnosis of Heart Failure: A Perioperative Data-Driven Approach

心力衰竭的早期诊断:围手术期数据驱动的方法

基本信息

项目摘要

PROJECT SUMMARY / ABSTRACT Candidate: Dr. Michael Mathis is a cardiothoracic anesthesiologist with board certification in anesthesiology and advanced perioperative echocardiography at the University of Michigan. Through completion of a T32 Research Training Grant, Dr. Mathis has developed expertise in perioperative outcomes research for patients with advanced cardiovascular disease. His long-term career goal is to improve care for patients with heart failure (HF) through harnessing perioperative electronic healthcare record (EHR) data for early diagnosis and management. This proposal builds on Dr. Mathis's expertise, providing protected time for training in data science methods necessary to drive forward the analytic techniques proposed for improving HF diagnosis. Environment: The University of Michigan is the coordinating center for the Multicenter Perioperative Outcomes Group (MPOG), an international consortium of over 50 anesthesiology and surgical departments with perioperative information systems. Dr. Sachin Kheterpal, MD, MBA is the primary mentor for Dr. Mathis, and is the Director for MPOG and member of the NIH Precision Medicine Initiative Advisory Panel. The proposed research will be completed under the guidance of Dr. Kheterpal, as well as co-mentors Milo Engoren, MD, Daniel Clauw, MD, and Kayvan Najarian, PhD. An advisory panel of experts in HF diagnosis and data science methodologies will provide Dr. Mathis with additional guidance. Background: HF is among the most common chronic conditions requiring hospitalization and carries high rates of mortality. In the perioperative period, HF is a risk factor for major cardiac complications. Despite advances in care, little progress has been made to reduce HF healthcare burden, with difficulties attributable to a lack of inexpensive, reliable diagnostic measures. Consequently, patients with HF can go unrecognized in early stages and do not receive treatments to reduce mortality. The perioperative period is an underutilized opportunity to improve HF diagnosis. Beyond the wealth of preoperative data available, the intraoperative period serves as a cardiac stress test through which hemodynamic responses to surgical and anesthetic stimuli are recorded with high resolution. Yet, this data remains an untapped resource for HF evaluation. Research: The goal of the proposed research is to incorporate the perioperative period as an opportunity for early diagnosis of HF. The two specific Aims are to develop a data-driven diagnostic algorithm for HF using preoperative EHR data (Aim 1) as well as intraoperative EHR data (Aim 2). Both aims will use automated techniques to extract features of HF from the perioperative EHR, developed at UM and scalable to multiple centers via the MPOG infrastructure. This work represents a paradigm shift in perioperative evaluation, using perioperative data as a diagnostic tool rather than a risk-assessment tool. The proposed research and training will provide Dr. Mathis with necessary data science computational experience to become an independent physician-investigator focused on improving perioperative management strategies for patients with HF.
项目摘要/摘要

项目成果

期刊论文数量(24)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Classification of Current Procedural Terminology Codes from Electronic Health Record Data Using Machine Learning.
  • DOI:
    10.1097/aln.0000000000003150
  • 发表时间:
    2020-04
  • 期刊:
  • 影响因子:
    8.8
  • 作者:
    Burns ML;Mathis MR;Vandervest J;Tan X;Lu B;Colquhoun DA;Shah N;Kheterpal S;Saager L
  • 通讯作者:
    Saager L
Reduced Echocardiographic Inotropy Index after Cardiopulmonary Bypass Is Associated With Complications After Cardiac Surgery: An Institutional Outcomes Study.
  • DOI:
    10.1053/j.jvca.2021.01.041
  • 发表时间:
    2021-09
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Mathis MR;Duggal NM;Janda AM;Fennema JL;Yang B;Pagani FD;Maile MD;Hofer RE;Jewell ES;Engoren MC
  • 通讯作者:
    Engoren MC
Transesophageal Echocardiography for Cardiac Surgery Patients With Prior Esophagectomies: Insights From a 15-Year Institutional Experience.
对既往接受过食管切除术的心脏手术患者进行经食管超声心动图检查:来自 15 年机构经验的见解。
Variation in propofol induction doses administered to surgical patients over age 65.
  • DOI:
    10.1111/jgs.17139
  • 发表时间:
    2021-08
  • 期刊:
  • 影响因子:
    6.3
  • 作者:
    Schonberger RB;Bardia A;Dai F;Michel G;Yanez D;Curtis JP;Vaughn MT;Burg MM;Mathis M;Kheterpal S;Akhtar S;Shah N
  • 通讯作者:
    Shah N
Sugammadex versus Neostigmine for Reversal of Neuromuscular Blockade and Postoperative Pulmonary Complications (STRONGER): A Multicenter Matched Cohort Analysis.
Sugammadex与Neostigmine的神经肌肉阻滞和术后肺并发症的逆转(更强):多中心匹配的队列分析。
  • DOI:
    10.1097/aln.0000000000003256
  • 发表时间:
    2020-06
  • 期刊:
  • 影响因子:
    8.8
  • 作者:
    Kheterpal S;Vaughn MT;Dubovoy TZ;Shah NJ;Bash LD;Colquhoun DA;Shanks AM;Mathis MR;Soto RG;Bardia A;Bartels K;McCormick PJ;Schonberger RB;Saager L
  • 通讯作者:
    Saager L
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael Robert Mathis其他文献

Michael Robert Mathis的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael Robert Mathis', 18)}}的其他基金

Cardiac sURgery anesthesia Best practices to reduce Acute Kidney Injury (CURB-AKI)
心脏手术麻醉减少急性肾损伤 (CURB-AKI) 的最佳实践
  • 批准号:
    10656576
  • 财政年份:
    2022
  • 资助金额:
    $ 17.28万
  • 项目类别:
Early Diagnosis of Heart Failure: A Perioperative Data-Driven Approach
心力衰竭的早期诊断:围手术期数据驱动的方法
  • 批准号:
    9895469
  • 财政年份:
    2018
  • 资助金额:
    $ 17.28万
  • 项目类别:

相似海外基金

CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 17.28万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 17.28万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 17.28万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 17.28万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 17.28万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 17.28万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 17.28万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 17.28万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 17.28万
  • 项目类别:
    Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 17.28万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了