Early Diagnosis of Heart Failure: A Perioperative Data-Driven Approach

心力衰竭的早期诊断:围手术期数据驱动的方法

基本信息

项目摘要

PROJECT SUMMARY / ABSTRACT Candidate: Dr. Michael Mathis is a cardiothoracic anesthesiologist with board certification in anesthesiology and advanced perioperative echocardiography at the University of Michigan. Through completion of a T32 Research Training Grant, Dr. Mathis has developed expertise in perioperative outcomes research for patients with advanced cardiovascular disease. His long-term career goal is to improve care for patients with heart failure (HF) through harnessing perioperative electronic healthcare record (EHR) data for early diagnosis and management. This proposal builds on Dr. Mathis's expertise, providing protected time for training in data science methods necessary to drive forward the analytic techniques proposed for improving HF diagnosis. Environment: The University of Michigan is the coordinating center for the Multicenter Perioperative Outcomes Group (MPOG), an international consortium of over 50 anesthesiology and surgical departments with perioperative information systems. Dr. Sachin Kheterpal, MD, MBA is the primary mentor for Dr. Mathis, and is the Director for MPOG and member of the NIH Precision Medicine Initiative Advisory Panel. The proposed research will be completed under the guidance of Dr. Kheterpal, as well as co-mentors Milo Engoren, MD, Daniel Clauw, MD, and Kayvan Najarian, PhD. An advisory panel of experts in HF diagnosis and data science methodologies will provide Dr. Mathis with additional guidance. Background: HF is among the most common chronic conditions requiring hospitalization and carries high rates of mortality. In the perioperative period, HF is a risk factor for major cardiac complications. Despite advances in care, little progress has been made to reduce HF healthcare burden, with difficulties attributable to a lack of inexpensive, reliable diagnostic measures. Consequently, patients with HF can go unrecognized in early stages and do not receive treatments to reduce mortality. The perioperative period is an underutilized opportunity to improve HF diagnosis. Beyond the wealth of preoperative data available, the intraoperative period serves as a cardiac stress test through which hemodynamic responses to surgical and anesthetic stimuli are recorded with high resolution. Yet, this data remains an untapped resource for HF evaluation. Research: The goal of the proposed research is to incorporate the perioperative period as an opportunity for early diagnosis of HF. The two specific Aims are to develop a data-driven diagnostic algorithm for HF using preoperative EHR data (Aim 1) as well as intraoperative EHR data (Aim 2). Both aims will use automated techniques to extract features of HF from the perioperative EHR, developed at UM and scalable to multiple centers via the MPOG infrastructure. This work represents a paradigm shift in perioperative evaluation, using perioperative data as a diagnostic tool rather than a risk-assessment tool. The proposed research and training will provide Dr. Mathis with necessary data science computational experience to become an independent physician-investigator focused on improving perioperative management strategies for patients with HF.
项目总结/摘要 候选人:Michael马西斯博士是一名拥有麻醉学委员会认证的心胸麻醉师 以及密歇根大学的高级围手术期超声心动图通过完成T32 马西斯博士获得了研究培训补助金,在患者围手术期结局研究方面积累了专业知识 患有严重的心血管疾病他的长期职业目标是改善对心脏病患者的护理, 通过利用围手术期电子医疗记录(EHR)数据进行早期诊断, 管理该提案以马西斯博士的专业知识为基础,为数据培训提供了受保护的时间 科学的方法,必要的推动提出的分析技术,以改善HF诊断。 环境:密歇根大学是多中心围手术期的协调中心 结果组(MPOG),一个由50多个麻醉和外科部门组成的国际联盟 围手术期信息系统Sachin Kheterpal博士,医学博士,MBA是马西斯博士的主要导师, 他是MPOG的主任,也是NIH精准医学倡议咨询小组的成员。的 拟议的研究将在Kheterpal博士和共同导师米洛恩戈伦的指导下完成, 医学博士、医学博士丹尼尔克劳和博士凯万纳贾里安。HF诊断和数据专家咨询小组 科学方法将为马西斯博士提供额外的指导。 背景:HF是最常见的需要住院治疗的慢性疾病之一, 死亡率。在围手术期,HF是主要心脏并发症的危险因素。尽管 护理方面取得了进展,但在减轻HF医疗负担方面却进展甚微,困难归因于 缺乏廉价、可靠的诊断手段。因此,HF患者可能无法识别, 早期阶段,不接受治疗,以降低死亡率。围手术期是一个未充分利用的 改善HF诊断的机会。除了丰富的术前数据外,术中 期间作为心脏负荷试验,通过该试验, 以高分辨率记录刺激。然而,这些数据仍然是HF评估的未开发资源。 研究:拟议研究的目标是将围手术期作为一个机会, HF的早期诊断两个具体目标是开发一种数据驱动的HF诊断算法, 术前EHR数据(目标1)以及术中EHR数据(目标2)。两个目标都将使用自动化 从围手术期EHR中提取HF特征的技术,在UM开发,可扩展到多个 通过MPOG基础设施。这项工作代表了围手术期评估的范式转变,使用 围手术期数据作为诊断工具,而不是风险评估工具。拟议的研究和培训 将为马西斯博士提供必要的数据科学计算经验,使其成为一名独立的 医生-研究者关注于改善HF患者的围手术期管理策略。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael Robert Mathis其他文献

Michael Robert Mathis的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael Robert Mathis', 18)}}的其他基金

Cardiac sURgery anesthesia Best practices to reduce Acute Kidney Injury (CURB-AKI)
心脏手术麻醉减少急性肾损伤 (CURB-AKI) 的最佳实践
  • 批准号:
    10656576
  • 财政年份:
    2022
  • 资助金额:
    $ 17.23万
  • 项目类别:
Early Diagnosis of Heart Failure: A Perioperative Data-Driven Approach
心力衰竭的早期诊断:围手术期数据驱动的方法
  • 批准号:
    10421285
  • 财政年份:
    2018
  • 资助金额:
    $ 17.23万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 17.23万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 17.23万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 17.23万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 17.23万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 17.23万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 17.23万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 17.23万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 17.23万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 17.23万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 17.23万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了