The genetic control of neuronal number and behavior
神经元数量和行为的遗传控制
基本信息
- 批准号:10428112
- 负责人:
- 金额:$ 10万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:Advisory CommitteesAffectAnimalsAreaBehaviorBehavior ControlBehavioralBehavioral GeneticsBrainCandidate Disease GeneCaringCell NucleusCellsChild RearingChromosome MappingCodeDataData AnalysesData ScienceDeer MouseDetectionDiagnosisDiseaseDrosophila genusEvolutionExhibitsFinancial compensationFingersGenesGeneticGenomicsHeritabilityHouse miceHumanHypothalamic structureImmediate-Early GenesInstinctLeadershipMapsMediatingMentorsMentorshipMolecularMolecular BiologyMusNarcolepsyNesting BehaviorNeuronsNeuropeptidesOptic LobePathway interactionsPerformancePeromyscusPhenotypePopulationPopulation SizesPrimatesProcessRegulationResearchResearch TrainingRoleScientistSensorySex RatioSisterSocial BehaviorSpecific qualifier valueStereotypingTestingTrainingVariantVasopressinsWorkautism spectrum disorderblindcare systemscareer developmentcausal variantcell typecomparativecomparative genomicsdexteritydrug developmentexperimental studyforward geneticsgenetic linkage analysisgenetic variantgenomic locusinnovationneurogeneticsneuropsychiatric disorderprogramsresearch and developmentsexsexual dimorphismskillstrait
项目摘要
Project Summary/Abstract
The genetic control of neuron number is an important mechanism by which genes can encode for behavior.
Expansions of specific neuronal populations have been associated with behavioral innovations such as
increased olfactory abilities, while deficiencies of particular neuronal types in humans have been associated
with disorders including autism spectrum disorder. However, the genes and molecular pathways that specify
neuron number to govern behavior are largely unknown. The proposed research investigates two ways in
which innate behaviors are controlled by population sizes of specific neurons in the hypothalamus of
Peromyscus deer mice. In the first aim, I will investigate how variation in parental nesting behavior is controlled
by numbers of neuron expressing vasopressin, a neuropeptide with important roles in sociosexual behavior. In
the second aim, I will investigate how variation in sex-specific parental behaviors are controlled by sex-specific
neuronal numbers.
This research takes advantage of two closely-related species of Peromyscus deer mice which have evolved
large, heritable differences in parental care, but have minimal genetic differences between them. First, I will
use comparative genomic sequencing and neurogenetics approaches, such as the detection of immediate-
early genes, to implicate candidate cell types whose neuron numbers are co-evolving with and responsible for
behavioral differences across Peromyscus species. Then, by combining genetic mapping with single-nuclei
sequencing, I will determine the causal genetic loci controlling neuronal population sizes and test candidate
genes for their effect on neuron number and downstream behavior. This research will implicate important
neurodevelopmental pathways regulating innate behavior and contribute to our ability to diagnose and treat
neurodevelopmental diseases.
The proposed research will be conducted under the mentorship of Dr. Hopi Hoekstra, an expert in Peromyscus
behavioral genetics, and Dr. Sean Eddy, an expert in comparative genomic data analysis. Additionally, I will be
mentored by an advisory committee composed of Dr. Catherine Dulac, an expert in neurogenetics of social
behaviors, Dr. Steve McCarroll, an expert in neuronal single-cell genomics, and Drs. Francesca Dominici and
David Parkes, co-directors of the Harvard Data Science Initiative. Under this mentorship, I will develop
research skills in molecular biology, mouse behavioral experiments, and neuronal single-cell data analysis. I
will also use my training and participation in the MOSAIC program to develop leadership skills including lab
management, inclusive mentoring, and scientific presentation skills. Together, my research training and career
development activities will launch my successful transition to an independent research scientist.
项目总结/摘要
神经元数量的遗传控制是基因编码行为的重要机制。
特定神经元群体的扩张与行为创新有关,
嗅觉能力增强,而人类特定神经元类型的缺乏与
包括自闭症谱系障碍在内的疾病。然而,基因和分子途径,
控制行为的神经元数量在很大程度上是未知的。拟议的研究调查了两种方法,
哪些先天行为是由下丘脑中特定神经元的数量控制的?
鹿鼠在第一个目标中,我将研究如何控制父母筑巢行为的变化
通过表达加压素的神经元数量,加压素是一种在社会性行为中起重要作用的神经肽。在
第二个目标,我将研究性别特异性父母行为的变化是如何被性别特异性控制的。
神经元数量
这项研究利用了两种密切相关的鹿鼠,
在父母照顾方面存在巨大的、可遗传的差异,但它们之间的遗传差异极小。首先我会
使用比较基因组测序和神经遗传学方法,如检测即刻-
早期基因,暗示候选细胞类型的神经元数量是共同进化的,并负责
不同种属的行为差异。然后,通过结合遗传作图和单核
测序,我将确定控制神经元群体大小的因果遗传位点,并测试候选人。
基因对神经元数量和下游行为的影响。这项研究将涉及重要的
调节先天行为的神经发育途径,有助于我们诊断和治疗
神经发育疾病
这项拟议中的研究将在Peromyscus专家Hopi Hoekstra博士的指导下进行
行为遗传学和比较基因组数据分析专家Sean Eddy博士。另外,我将
由凯瑟琳迪拉克博士组成的咨询委员会指导,她是社会神经遗传学专家,
神经元单细胞基因组学专家Steve McCarroll博士和Francesca Dominici博士以及
大卫帕克斯,联合主任的哈佛数据科学倡议。在这种指导下,我将发展
在分子生物学,小鼠行为实验和神经元单细胞数据分析的研究技能。我
我还将利用我在MOSAIC项目中的培训和参与来发展领导技能,包括实验室
管理,包容性的指导,和科学的演讲技巧。我的研究训练和职业生涯
发展活动将使我成功转变为一名独立研究科学家。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jennifer Chen其他文献
Jennifer Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jennifer Chen', 18)}}的其他基金
The genetic control of neuronal number and behavior
神经元数量和行为的遗传控制
- 批准号:
10652437 - 财政年份:2022
- 资助金额:
$ 10万 - 项目类别:
相似海外基金
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Fellowship
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Research Grant
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
- 批准号:
2301846 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
- 批准号:
23K16076 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Grant-in-Aid for Early-Career Scientists














{{item.name}}会员




