Clinical trial readiness biomarkers for gene dosage-dependent disorders
基因剂量依赖性疾病的临床试验准备生物标志物
基本信息
- 批准号:10427281
- 负责人:
- 金额:$ 20.06万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-22 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAlgorithmsAllelesAntisense Oligonucleotide TherapyAntisense OligonucleotidesAttentionAuditory Evoked PotentialsBioinformaticsBiologicalBiological MarkersBiosensorBlinkingBloodBrainCell LineCellsClinicalClinical TrialsCognitionCommunitiesComplementComplementary DNAComplexCopy Number PolymorphismDNADataData AnalysesData SetDevelopmentDevelopmental GeneDiseaseDoseEnrollmentEvoked PotentialsFibroblastsFoundationsFutureGene DosageGene ExpressionGene MutationGenesGeneticGoalsHumanImpairmentIndividualIntellectual and Developmental Disabilities Research CentersIntellectual functioning disabilityLearningMachine LearningMass Spectrum AnalysisMeasurementMeasuresMediator of activation proteinMedicineMemoryMendelian disorderMethodologyMolecularMolecular ProfilingMusMutationNatural HistoryNeurologicNeuronsOutcome MeasureParticipantPathologyPatientsPerceptionPeripheralPhenotypePhysiologicalPopulation StudyPotocki-Lupski syndromeProteinsPupilRNA SplicingReadinessRecording of previous eventsResearchResearch Project GrantsSafetySensoryServicesSeveritiesSingle Nucleotide PolymorphismSpinal Muscular AtrophyStimulusSumSymptomsSyndromeTestingTimeTreatment EfficacyTreatment-related toxicityVisualWorkbasebiomarker signatureclinical phenotypeclinical trial readinesscognitive functioncohortcollegedesigndosagegain of functiongene replacementimprovedindividual patientinduced pluripotent stem cellinnovationinsightinterestloss of functionmetabolomemetabolomicsmolecular markermouse modelmultimodal dataneural circuitnew technologynext generationnoveloverexpressionovertreatmentprecision medicineprepulse inhibitionresponsesocial skillssomatosensorytooltranscriptometranscriptome sequencingtranscriptomics
项目摘要
DNA-based therapy has made tremendous advances recently, as evident by the increase in emerging potential
therapies such as gene replacement and antisense oligonucleotides to alter splicing or downregulate an extra
allele. These therapies hold the promise to treat many IDDs; however, major challenges must be addressed to
achieve successful clinical trials. Safety of such therapies is of the utmost importance since many of the genes
are dosage sensitive. It is therefore critical to identify outcome measures sensitive to target engagement and
able to detect overtreatment and unintended conversion of gain-of-function phenotypes into a loss-of-function
phenotypes, and vice versa. Here, we focus on MECP2- (Rett vs. MECP2 Duplication), RAI1- (Smith-Magenis
vs. Potocki-Lupski syndrome) and SHANK3- (Phelan-McDermid vs. SHANK3 Duplication) associated disorders
as test cases of IDDs that are caused by alterations of these dosage-dependent genes. We propose to identify
molecular and neurocircuitry mediators/effectors of dosage alterations of these genes, both peripherally and
centrally, to develop composite biomarkers that are responsive to gene dosage in each individual at their
particular disease stage. Toward this goal, we capitalize on the established patient cohorts at Baylor College of
Medicine, which
has an extensive history in studying these disorders and their genetics. In Aim 1, we will
establish patient-specific molecular signatures of human induced neurons (iNs), derived from both fibroblasts
and inducible pluripotent stem cells, and blood, using metabolomics and transcriptomics. In Aim 2, we will
establish patient-specific autonomic and sensory neurocircuitry signatures of the momentary disease stage
and severity using novel pre-pulse inhibition paradigm, pupillometry, and evoked potentials. These signatures
will be obtained twice from the same subject, 8-12 months apart, to assess stability. We will then integrate
these dense multimodal datasets from each subject to generate a composite biomarker that accurately
represents personalized response to the gene dosage level at that particular time. In contrast to conventional
population studies – and in the spirit of precision medicine – this analysis framework relies on complete and
diverse datasets from each participant because safety at the individual level is paramount to avoid causing
unintended phenotypes. This project is possible because of the ability to access the innovative services from
all the cores. The strategies we develop will provide a template to advance the use of DNA-based therapy for
treatment of many monogenic disorders and could help inform many disorders that are gene dosage-
dependent. The patient-specific cell lines, molecular, and circuit data will be available for the scientific
community in perpetuity, will complement natural history studies, and will inform future clinical trials. Lastly, the
new methodologies for examining neurocircuitry and the integrative data analysis approaches at multiple levels
will potentially provide transformative tools and analytical algorithms for assessment, safe dosing, and
accelerated clinical trials for multiple gene dosage-dependent IDDs.
基于DNA的治疗最近取得了巨大的进步,新兴潜力的增加证明了这一点。
改变剪接或下调额外基因的治疗方法,如基因替换和反义寡核苷酸
等位基因。这些疗法有望治疗许多IDDS;然而,必须应对重大挑战
取得临床试验成功。这种疗法的安全性是至关重要的,因为许多基因
对剂量敏感。因此,至关重要的是确定对目标接触敏感的成果衡量标准和
能够检测到过度治疗和功能增益表型向功能丧失的意外转换
表型,反之亦然。在这里,我们重点介绍MECP2-(Rett与MECP2复制)、RAI1-(Smith-Magenis
与Potocki-Lupski综合征)和SHANK3-(Phelan-Mcdermidvs.SHANK3重复)相关疾病
作为IDDS的测试案例,这些IDDS是由这些剂量依赖基因的改变引起的。我们建议确定
这些基因剂量变化的分子和神经回路介体/效应物,外周和
集中地,开发复合生物标记物,以响应每个个体在其
特定的疾病阶段。为了实现这一目标,我们充分利用了贝勒医学院现有的患者队列。
医学,其中
在研究这些疾病及其遗传学方面有着广泛的历史。在目标1中,我们将
建立来源于两种成纤维细胞的人诱导神经元(INS)的患者特异性分子特征
和可诱导的多能干细胞,以及血液,利用代谢组学和转录组学。在目标2中,我们将
建立短暂疾病阶段患者特有的自主神经和感觉神经回路特征
使用新的脉冲前抑制范式、瞳孔测量和诱发电位来评估严重程度。这些签名
将从同一受试者身上获得两次,相隔8-12个月,以评估稳定性。然后我们将整合
这些来自每个受试者的密集多模式数据集以生成准确的复合生物标志物
表示对特定时间的基因剂量水平的个性化反应。与传统的
人口研究--本着精确医学的精神--这一分析框架依赖于完整和
来自每个参与者的不同数据集,因为个人层面的安全是最重要的,以避免导致
意外的表型。该项目之所以有可能,是因为能够从
所有的核心。我们开发的策略将提供一个模板,以促进基于DNA的治疗在
治疗许多单基因疾病,并可能有助于了解许多疾病是基因剂量-
依附的。特定于患者的细胞系、分子和电路数据将供科学研究人员使用
永久社区,将补充自然历史研究,并将为未来的临床试验提供信息。最后,
检查神经回路的新方法和多层次的综合数据分析方法
将潜在地提供变革性工具和分析算法,用于评估、安全剂量和
加速多基因剂量依赖性IDDS的临床试验。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MIRJANA MALETIC-SAVATIC其他文献
MIRJANA MALETIC-SAVATIC的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MIRJANA MALETIC-SAVATIC', 18)}}的其他基金
Effects of 16p11.2 copy number variation on neuronal development and pathology
16p11.2 拷贝数变异对神经元发育和病理学的影响
- 批准号:
10659523 - 财政年份:2023
- 资助金额:
$ 20.06万 - 项目类别:
Using MR Spectroscopy to Measure Mammalian Neurogenesis in Vivo
使用磁共振波谱测量哺乳动物体内神经发生
- 批准号:
10434476 - 财政年份:2022
- 资助金额:
$ 20.06万 - 项目类别:
Using MR Spectroscopy to Measure Mammalian Neurogenesis in Vivo
使用磁共振波谱测量哺乳动物体内神经发生
- 批准号:
10627832 - 财政年份:2022
- 资助金额:
$ 20.06万 - 项目类别:
Clinical trial readiness biomarkers for gene dosage-dependent disorders
基因剂量依赖性疾病的临床试验准备生物标志物
- 批准号:
10221025 - 财政年份:2020
- 资助金额:
$ 20.06万 - 项目类别:
Clinical trial readiness biomarkers for gene dosage-dependent disorders
基因剂量依赖性疾病的临床试验准备生物标志物
- 批准号:
10675478 - 财政年份:2020
- 资助金额:
$ 20.06万 - 项目类别:
CEREBRAL LANGUAGE ORGANIZATION IN CHILDREN WITH AUTISM SPECTRUM DISORDERS
自闭症谱系障碍儿童的大脑语言组织
- 批准号:
7607883 - 财政年份:2007
- 资助金额:
$ 20.06万 - 项目类别:
Identification and tracking of neural stem cells in vivo: a metabolomic approach
体内神经干细胞的识别和追踪:代谢组学方法
- 批准号:
7286826 - 财政年份:2006
- 资助金额:
$ 20.06万 - 项目类别:
Identification and tracking of neural stem cells in vivo: a metabolomic approach
体内神经干细胞的识别和追踪:代谢组学方法
- 批准号:
7145549 - 财政年份:2006
- 资助金额:
$ 20.06万 - 项目类别:
CEREBRAL LANGUAGE ORGANIZATION IN CHILDREN WITH AUTISM SPECTRUM DISORDERS
自闭症谱系障碍儿童的大脑语言组织
- 批准号:
7375380 - 财政年份:2005
- 资助金额:
$ 20.06万 - 项目类别:
Activity-dependent control: neural progenitor cell fate
活动依赖性控制:神经祖细胞命运
- 批准号:
7090009 - 财政年份:2002
- 资助金额:
$ 20.06万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 20.06万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 20.06万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 20.06万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 20.06万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 20.06万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 20.06万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 20.06万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 20.06万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 20.06万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 20.06万 - 项目类别:
Continuing Grant














{{item.name}}会员




