Clinical trial readiness biomarkers for gene dosage-dependent disorders

基因剂量依赖性疾病的临床试验准备生物标志物

基本信息

  • 批准号:
    10427281
  • 负责人:
  • 金额:
    $ 20.06万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-07-22 至 2025-05-31
  • 项目状态:
    未结题

项目摘要

DNA-based therapy has made tremendous advances recently, as evident by the increase in emerging potential therapies such as gene replacement and antisense oligonucleotides to alter splicing or downregulate an extra allele. These therapies hold the promise to treat many IDDs; however, major challenges must be addressed to achieve successful clinical trials. Safety of such therapies is of the utmost importance since many of the genes are dosage sensitive. It is therefore critical to identify outcome measures sensitive to target engagement and able to detect overtreatment and unintended conversion of gain-of-function phenotypes into a loss-of-function phenotypes, and vice versa. Here, we focus on MECP2- (Rett vs. MECP2 Duplication), RAI1- (Smith-Magenis vs. Potocki-Lupski syndrome) and SHANK3- (Phelan-McDermid vs. SHANK3 Duplication) associated disorders as test cases of IDDs that are caused by alterations of these dosage-dependent genes. We propose to identify molecular and neurocircuitry mediators/effectors of dosage alterations of these genes, both peripherally and centrally, to develop composite biomarkers that are responsive to gene dosage in each individual at their particular disease stage. Toward this goal, we capitalize on the established patient cohorts at Baylor College of Medicine, which has an extensive history in studying these disorders and their genetics. In Aim 1, we will establish patient-specific molecular signatures of human induced neurons (iNs), derived from both fibroblasts and inducible pluripotent stem cells, and blood, using metabolomics and transcriptomics. In Aim 2, we will establish patient-specific autonomic and sensory neurocircuitry signatures of the momentary disease stage and severity using novel pre-pulse inhibition paradigm, pupillometry, and evoked potentials. These signatures will be obtained twice from the same subject, 8-12 months apart, to assess stability. We will then integrate these dense multimodal datasets from each subject to generate a composite biomarker that accurately represents personalized response to the gene dosage level at that particular time. In contrast to conventional population studies – and in the spirit of precision medicine – this analysis framework relies on complete and diverse datasets from each participant because safety at the individual level is paramount to avoid causing unintended phenotypes. This project is possible because of the ability to access the innovative services from all the cores. The strategies we develop will provide a template to advance the use of DNA-based therapy for treatment of many monogenic disorders and could help inform many disorders that are gene dosage- dependent. The patient-specific cell lines, molecular, and circuit data will be available for the scientific community in perpetuity, will complement natural history studies, and will inform future clinical trials. Lastly, the new methodologies for examining neurocircuitry and the integrative data analysis approaches at multiple levels will potentially provide transformative tools and analytical algorithms for assessment, safe dosing, and accelerated clinical trials for multiple gene dosage-dependent IDDs.
以dna为基础的治疗最近取得了巨大的进步,这一点从新兴潜力的增加就可以看出

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MIRJANA MALETIC-SAVATIC其他文献

MIRJANA MALETIC-SAVATIC的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MIRJANA MALETIC-SAVATIC', 18)}}的其他基金

Effects of 16p11.2 copy number variation on neuronal development and pathology
16p11.2 拷贝数变异对神经元发育和病理学的影响
  • 批准号:
    10659523
  • 财政年份:
    2023
  • 资助金额:
    $ 20.06万
  • 项目类别:
Using MR Spectroscopy to Measure Mammalian Neurogenesis in Vivo
使用磁共振波谱测量哺乳动物体内神经发生
  • 批准号:
    10434476
  • 财政年份:
    2022
  • 资助金额:
    $ 20.06万
  • 项目类别:
Using MR Spectroscopy to Measure Mammalian Neurogenesis in Vivo
使用磁共振波谱测量哺乳动物体内神经发生
  • 批准号:
    10627832
  • 财政年份:
    2022
  • 资助金额:
    $ 20.06万
  • 项目类别:
Clinical trial readiness biomarkers for gene dosage-dependent disorders
基因剂量依赖性疾病的临床试验准备生物标志物
  • 批准号:
    10221025
  • 财政年份:
    2020
  • 资助金额:
    $ 20.06万
  • 项目类别:
Clinical trial readiness biomarkers for gene dosage-dependent disorders
基因剂量依赖性疾病的临床试验准备生物标志物
  • 批准号:
    10675478
  • 财政年份:
    2020
  • 资助金额:
    $ 20.06万
  • 项目类别:
CEREBRAL LANGUAGE ORGANIZATION IN CHILDREN WITH AUTISM SPECTRUM DISORDERS
自闭症谱系障碍儿童的大脑语言组织
  • 批准号:
    7607883
  • 财政年份:
    2007
  • 资助金额:
    $ 20.06万
  • 项目类别:
Identification and tracking of neural stem cells in vivo: a metabolomic approach
体内神经干细胞的识别和追踪:代谢组学方法
  • 批准号:
    7286826
  • 财政年份:
    2006
  • 资助金额:
    $ 20.06万
  • 项目类别:
Identification and tracking of neural stem cells in vivo: a metabolomic approach
体内神经干细胞的识别和追踪:代谢组学方法
  • 批准号:
    7145549
  • 财政年份:
    2006
  • 资助金额:
    $ 20.06万
  • 项目类别:
CEREBRAL LANGUAGE ORGANIZATION IN CHILDREN WITH AUTISM SPECTRUM DISORDERS
自闭症谱系障碍儿童的大脑语言组织
  • 批准号:
    7375380
  • 财政年份:
    2005
  • 资助金额:
    $ 20.06万
  • 项目类别:
Activity-dependent control: neural progenitor cell fate
活动依赖性控制:神经祖细胞命运
  • 批准号:
    7090009
  • 财政年份:
    2002
  • 资助金额:
    $ 20.06万
  • 项目类别:

相似海外基金

CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 20.06万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 20.06万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 20.06万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 20.06万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 20.06万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 20.06万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 20.06万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 20.06万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 20.06万
  • 项目类别:
    Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 20.06万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了