Development of non-contact rheometry for measuring rheological properties of biological fluids
开发用于测量生物液体流变特性的非接触式流变仪
基本信息
- 批准号:10426636
- 负责人:
- 金额:$ 0.62万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-05-01 至 2022-07-15
- 项目状态:已结题
- 来源:
- 关键词:AcousticsAddressAirBehaviorBiologicalBiological MarkersBiologyBloodBlood ViscosityBlood capillariesCOVID-19ClinicalCoronary heart diseaseCustomDevelopmentDevicesDiagnosisDiseaseDisease ProgressionEnvironmentFrequenciesGlycerolGoalsHematocrit procedureHematological DiseaseIndustrializationLaboratoriesLinkLiquid substanceLungMeasurementMeasuresMethodsMotionMucous body substanceOptical Coherence TomographyPathologic ProcessesPatternPeripheral arterial diseasePhasePhysiologic pulsePhysiological ProcessesPlasmaProblem SolvingPropertyPublicationsRadiationReportingResearchResolutionRotationSamplingScanningSourceStrokeSurfaceSurface TensionSystemTechniquesTestingTheoretical modelThinnessTimeTouch sensationTransducersTubeViscosityWaterWorkbasedata acquisitionexperimental studyhyperviscosity syndromeinstrumentparticlerespiratory distress syndromesignal processingultrasound
项目摘要
ABSTRACT/SUMMARY
Background: Rheological properties of biological fluids are closely linked with various physiological
processes. For example, disorders of blood viscosity are significantly associated with the progression of
coronary heart disease, peripheral artery diseases, stroke and hyperviscosity syndromes. The surface tension
of mucus is influenced by pathological processes in the lungs. While rheological properties of fluids are
important biomarkers critical to diagnose and evaluate progression of diseases, rheometry instruments have
been primarily developed for industrial applications. Existing rotational-based and tube-based rheometry
devices are not capable of measuring both surface tension and viscosity of fluids. Additionally, there are
various drawbacks of current rheometry instruments for measuring viscosity and methods for measuring
surface tension such as the need for contacting samples, necessitating highly skilled operators, and cleaning
the testing chamber between each sample.
This project aims to address these unmet and critical needs by developing a non-contact rheometry
method for measuring biological fluid surface tension and viscosity using small volume samples (thin-
layer fluid).
Methods: We will utilize ultrasound as an excitation source or “acoustic indenter” to generate a propagating
capillary wave on the surface of the fluid and use optical coherence tomography (OCT) as a measurement
device to precisely record particle displacements of wave motion. With this experimental approach, the sample
in a Petri dish is never in direct contact with any part of the measurement apparatus. Our previous work has
utilized capillary waves in a deep fluid regime to measure surface tension and viscosity. We will build on this
previous work to extend the theoretical model into the thin-layer fluid case, capillary waves in a shallow fluid
regime, in a similar non-contact fashion. We will optimize the proposed rheometry method to achieve
measurements with high accuracy and precision for thin-layer measurements.
To accomplish the goals of this project we propose these Specific Aims:
• Aim 1) Construct and validate the theoretical model for rheological properties in the shallow
fluid case.
• Aim 2) Optimize the rheometry acquisition method and signal processing to yield robust results
in thin fluid layers.
Impact: The proposed technique will carry out measurements with the following advantages including being
non-contact, fully automated, fast, and not needing cleaning between tests, which provides a biology-friendly
environment.
摘要/总结
背景:生物体液的流变特性与多种生理学密切相关。
流程。例如,血液粘度紊乱与以下疾病的进展显着相关:
冠心病、外周动脉疾病、中风和高粘滞综合征。表面张力
粘液的产生受到肺部病理过程的影响。虽然流体的流变特性是
对于诊断和评估疾病进展至关重要的重要生物标志物,流变测定仪器具有
主要是为工业应用而开发的。现有的基于旋转和基于管的流变测量
设备无法同时测量流体的表面张力和粘度。此外,还有
当前用于测量粘度的流变仪和测量方法的各种缺点
表面张力,例如需要接触样品、需要高技能的操作员和清洁
每个样品之间的测试室。
该项目旨在通过开发非接触式流变测量来解决这些未满足的关键需求
使用小体积样品(稀薄样品)测量生物液体表面张力和粘度的方法
层流体)。
方法:我们将利用超声波作为激励源或“声压头”来产生传播
流体表面的毛细波并使用光学相干断层扫描 (OCT) 进行测量
精确记录波动的质点位移的装置。通过这种实验方法,样本
培养皿中的任何部分都不会直接接触测量设备的任何部分。我们之前的工作有
利用深层流体状态中的毛细波来测量表面张力和粘度。我们将以此为基础
先前的工作将理论模型扩展到薄层流体情况,即浅层流体中的毛细波
制度,以类似的非接触方式。我们将优化所提出的流变测量方法以实现
薄层测量的高精度测量。
为了实现该项目的目标,我们提出以下具体目标:
• 目标 1) 构建并验证浅层流变特性的理论模型
流体情况。
• 目标 2) 优化流变采集方法和信号处理以产生稳健的结果
在薄薄的流体层中。
影响:所提出的技术将进行测量,具有以下优点,包括
非接触式、全自动、快速且无需在测试之间进行清洁,这提供了生物学友好的环境
环境。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hsiao-Chuan Liu其他文献
Hsiao-Chuan Liu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hsiao-Chuan Liu', 18)}}的其他基金
Development of non-contact rheometry for measuring rheological properties of biological fluids
开发用于测量生物液体流变特性的非接触式流变仪
- 批准号:
10691753 - 财政年份:2022
- 资助金额:
$ 0.62万 - 项目类别:
Development of non-contact rheometry for measuring rheological properties of biological fluids
开发用于测量生物液体流变特性的非接触式流变仪
- 批准号:
10615891 - 财政年份:2022
- 资助金额:
$ 0.62万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 0.62万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 0.62万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 0.62万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 0.62万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 0.62万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 0.62万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 0.62万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 0.62万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 0.62万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 0.62万 - 项目类别:
Research Grant














{{item.name}}会员




