Rethinking the Neural Correlates of Uncertain Threat Anticipation with a Statistical Learning Approach
用统计学习方法重新思考不确定威胁预期的神经关联
基本信息
- 批准号:10426704
- 负责人:
- 金额:$ 18.67万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-04-01 至 2024-03-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectAmygdaloid structureAnxietyAnxiety DisordersAversive StimulusBehaviorBiological ProcessBrainBrain regionCell NucleusComputer ModelsConflict (Psychology)CuesDataDecision MakingDevelopmentDiseaseEnvironmentFeelingFoundationsFunctional Magnetic Resonance ImagingIndividualInfluentialsLearningLightLiteratureMagnetic Resonance ImagingMeasuresMental disordersModelingNational Institute of Mental HealthNeurobiologyParticipantPatientsPersonal SatisfactionPersonsPhasePreventionProbabilityPsychiatric DiagnosisPsychiatryResearchResearch Domain CriteriaResearch PersonnelSeriesShockStartle ReactionStimulusStructure of terminal stria nuclei of preoptic regionTestingTheoretical modelTimeTrainingUncertaintyWorkanxiousbaseblood oxygenation level dependent responsedesigneffective therapyexperimental studyhazardimprovedneural circuitneural correlatenovelpatient populationself-reported anxietystatistical learningstatisticstheories
项目摘要
PROJECT ABSTRACT
Anxiety disorders are some of the most common and debilitating psychiatric diagnoses,
affecting ~1 in 3 people worldwide. Despite the enormous impact on global well-being, key
concepts that are critical to understanding these disorders remain poorly defined in the extant
literature. Although heightened sensitivity to "uncertain threat anticipation" is regarded as a core
contributor to anxiety and anxiety disorders and Threat Uncertainty is a core construct that cuts
across models of anxiety in the NIMH RDoC framework, there is no ground-truth definition of
"uncertainty". Previous studies have found that anticipation of temporally “uncertain” threats, as
compared to temporally “certain” threats, are associated with increases self-reported anxiety,
startle-responses, and brain activation in anxiety-related brain regions. In this proposal, we will
test an alternate explanation for these results using a computational, statistical-learning
approach. In particular, we suggest that lab-based assessments of uncertain anticipation have
confounded “uncertainty” with alterations in the probability of a threat given that it has not
already occurred, i.e. the hazard-rate. Here, building on our team’s expertise in anxiety and
decision-making, we will test the hypothesis that it hazard-rate, and not uncertainty per se,
accounts for increases in self-reported anxiety and persistence (Aim 1), as well as alterations in
anxiety-related BOLD responses in anxiety-relevant brain regions (Aim 2). To this end, we have
developed a novel paradigm that allows for a 2x2 design where we manipulate uncertainty
(high/low) and hazard-rate (high-low). In contrast to existing theories, which predict a main
effect of uncertainty, we predict a main effect of hazard-rate on all relevant measures. Relevant
measures include self-reported anxiety, persistence in a threatening environment, and fMRI
measures of brain activation. We will contrast this paradigm with previous paradigms that have
confounded uncertainty and hazard-rate to provide a more precise interpretation of extant
findings. This theory-driven computational approach to understanding uncertain anticipation has
the potential to provide a “course correct” for the field, refine our understanding of anxiety, and
inform the development of new treatments.
项目摘要
焦虑症是一些最常见的和衰弱的精神病诊断,
影响全球约三分之一的人。尽管对全球福祉产生了巨大影响,
对理解这些疾病至关重要的概念在现存的文献中仍然定义不清。
文学尽管对“不确定威胁预期”的高度敏感性被视为核心,
焦虑和焦虑症的贡献者和威胁不确定性是一个核心结构,
在NIMH RDoC框架中的焦虑模型中,
“不确定性”。以前的研究发现,对时间上“不确定”的威胁的预期,
与时间上的“某些”威胁相比,与自我报告的焦虑增加有关,
惊恐反应和焦虑相关脑区的大脑激活。在本提案中,我们将
测试这些结果的替代解释使用一个计算的,
approach.特别是,我们认为,基于实验室的评估不确定的预期,
混淆了“不确定性”与威胁概率的变化,因为它没有
已经发生,即危险率。在这里,基于我们团队在焦虑和
决策,我们将测试的假设,它的风险率,而不是不确定性本身,
解释了自我报告的焦虑和持久性(目标1)的增加,以及
焦虑相关脑区的焦虑相关BOLD反应(目标2)。为此我们
开发了一种新的模式,允许2x2的设计,我们可以操纵不确定性,
(high/低)和危害率(高-低)。与现有理论相反,现有理论预测一个主要的
不确定性的影响,我们预测的主要影响的危险率的所有相关措施。相关
测量包括自我报告的焦虑,在威胁环境中的持续性,以及功能磁共振成像。
大脑活动的指标我们将把这个范例与以前的范例进行对比,
混杂不确定性和危险率,以提供对现存
调查结果。这种理论驱动的计算方法来理解不确定的预期,
为该领域提供“正确的课程”的潜力,完善我们对焦虑的理解,
为新疗法的发展提供信息。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrew S Fox其他文献
Andrew S Fox的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrew S Fox', 18)}}的其他基金
Rethinking the Neural Correlates of Uncertain Threat Anticipation with a Statistical Learning Approach
用统计学习方法重新思考不确定威胁预期的神经关联
- 批准号:
10598581 - 财政年份:2022
- 资助金额:
$ 18.67万 - 项目类别:
Engineered AAV Identification, Validation, and Dissemination Pipeline for Brain Cell Type-Specific Manipulation Across Species
用于跨物种脑细胞类型特异性操作的工程 AAV 识别、验证和传播管道
- 批准号:
10350260 - 财政年份:2021
- 资助金额:
$ 18.67万 - 项目类别:
ORIGINS AND EMERGENCE OF MALADAPTIVE SOCIOEMOTIONAL BEHAVIOR DURING THE TRANSITION TO ADULTHOOD IN PRIMATES
灵长类动物成年过渡期间不良社会情绪行为的起源和出现
- 批准号:
10655314 - 财政年份:2020
- 资助金额:
$ 18.67万 - 项目类别:
ORIGINS AND EMERGENCE OF MALADAPTIVE SOCIOEMOTIONAL BEHAVIOR DURING THE TRANSITION TO ADULTHOOD IN PRIMATES
灵长类动物成年过渡期间不良社会情绪行为的起源和出现
- 批准号:
10256803 - 财政年份:2020
- 资助金额:
$ 18.67万 - 项目类别:
ORIGINS AND EMERGENCE OF MALADAPTIVE SOCIOEMOTIONAL BEHAVIOR DURING THE TRANSITION TO ADULTHOOD IN PRIMATES
灵长类动物成年过渡期间不良社会情绪行为的起源和出现
- 批准号:
10405658 - 财政年份:2020
- 资助金额:
$ 18.67万 - 项目类别:
相似海外基金
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 18.67万 - 项目类别:
Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 18.67万 - 项目类别:
Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 18.67万 - 项目类别:
Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 18.67万 - 项目类别:
Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 18.67万 - 项目类别:
Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 18.67万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 18.67万 - 项目类别:
Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
- 批准号:
2301846 - 财政年份:2023
- 资助金额:
$ 18.67万 - 项目类别:
Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 18.67万 - 项目类别:
Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
- 批准号:
23K16076 - 财政年份:2023
- 资助金额:
$ 18.67万 - 项目类别:
Grant-in-Aid for Early-Career Scientists














{{item.name}}会员




