Patient Specific 3D Printed Diabetic Insoles to Reduce Plantar Pressure
患者专用 3D 打印糖尿病鞋垫可减少足底压力
基本信息
- 批准号:10425710
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-04-01 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:3-Dimensional3D PrintAmputationAreaBehaviorCaringCharacteristicsClinicClinicalComputer softwareCustomDevelopmentDevicesDiabetes MellitusDiabetic Foot UlcerEffectivenessElementsFeedbackFinancial HardshipFinite Element AnalysisFoam CellsFocus GroupsFoot UlcerGeometryGrantHandHeadHealthcareHealthcare SystemsIncidenceIndividualJudgmentLifeLower ExtremityMeasurementMeasuresMechanical StressMedicineMetatarsal bone structureMethodsMissionMorbidity - disease rateNon-Insulin-Dependent Diabetes MellitusParticipantPatientsPatternPerformancePeripheral Nervous System DiseasesPlantar UlcersPreventionProductionPropertyQuality of lifeReportingResearch PersonnelRiskShapesShoesSpeedSurfaceSurvival RateTechniquesTechnologyTestingTherapeuticTimeTissuesTranslationsUlcerVeteransWalkingWeight-Bearing statebaseclinical practiceclinical translationcostdesigndiabeticdigitalexperiencefoothigh riskimprintimprovedimproved outcomeinnovationinsightlimb amputationlimb lossmanufacturing processmedical specialtiesmilitary veterannovelpressureprogramsrecruitsimulationsoft tissuestandard of careultrasound
项目摘要
It is estimated that, globally, a lower extremity amputation takes place every 30 seconds, and that 85% of
these amputations are the result of diabetic foot ulcers. Plantar foot ulcers develop, in part, due to high
loading and mechanical stress to the soft tissues of the foot. Custom standard of care insoles aim to reduce
regions of the foot that experience excessive plantar pressures by redistributing pressure to other areas.
Limitations in the effectiveness of standard of care insoles, however, result in rates of ulceration that remain
unacceptably high. Meanwhile, a revolution in 3D printing technologies, material properties, and digital
manufacturing pipelines are enabling a wave of innovative solutions that are improving outcomes in many
areas of medicine. We aim to leverage these techniques to create novel patient-specific 3D printed insoles
with personalized metamaterials which we believe will demonstrate superior offloading performance.
Personalized metamaterials are 3D printed materials formed from lattice patterns derived from patient-
specific characteristics, resulting in insoles that are uniquely matched to the patient’s needs. The aim of
this study is to determine if 3D printed insoles with personalized metamaterials reduce plantar pressures
for at-risk areas of the foot better than standard of care insoles. We will manufacture three different insoles,
namely the standard of care (SC), 3D printed pressure based (3DP-PB), and finite element optimized
(3DP-FE) insoles. 3DP-PB insoles will be designed from plantar foot shape and dynamic plantar pressure
while the 3DP-FE insoles will be designed from simulations of participant’s feet interacting with different
insole designs to optimize the insole shape and metamaterial properties. In a repeated measures study,
we will measure peak plantar pressure and pressure time integral for each type of insole with a group of
25 participants who have diabetes and elevated forefoot pressure. We hypothesize that the 3D printed
insoles comprised of personalized metamaterials derived from plantar measurements (3DP-PB) will have
greater reductions in the peak plantar pressure and pressure time integral than the SC insoles (H1).
Additionally, we hypothesize that, relative to the other two insoles, insoles optimized through patient-
specific finite element simulations (3DP-FE) will have the greatest reduction in peak plantar pressure and
pressure time integral (H2). To facilitate the clinical translation of the novel 3D printed insoles we will carry
out focus groups with patients and clinicians to gain their early feedback and insights. Results from these
focus groups will be qualitatively synthesized into actionable improvements to the insoles. Novel insoles
that utilize 3D printing fabrication may provide enhanced protection from foot ulcers that frequently
progress to amputation. Moreover, digital manufacturing technologies and 3D fabrication methods have
relatively low barriers to mass production, which can greatly expedite translation into clinics. The VA is
widely recognized as a leader in health care innovation. The development of custom 3D printed insoles
that may reduce risk for amputation is well-aligned with VA’s spirit of innovation and is supported by the
VA mission “To care for him who shall have borne the battle.” Reducing rates of ulceration in our Veteran
population has the potential to greatly reduce incidence of lower-limb amputations and improve the quality
of life for our Veterans.
据估计,在全球范围内,下肢截肢每30秒进行一次,而85%
这些截肢是糖尿病足溃疡的结果。足底足溃疡,部分原因是
脚的柔软的尖端加载和机械应力。定制的护理鞋垫旨在减少
通过将压力重新分布到其他地区,脚部的脚部地区遭受了过多的足底压力。
但是
高度高。同时,3D打印技术,材料属性和数字革命的革命
制造管道正在实现一波创新的解决方案,这些解决方案正在改善许多结果
医学领域。我们旨在利用这些技术来创建新颖的患者特异性3D印刷鞋垫
我们认为,具有个性化的超材料将表现出卓越的卸载性能。
个性化的超材料是由晶格图案形成的3D印刷材料
特定特征,导致鞋垫与患者的需求唯一匹配。目的
这项研究是为了确定带有个性化超材料的3D打印鞋垫是否减少了足底压力
对于脚的高风险区域比护理标准鞋垫更好。我们将制造三种不同的鞋垫,
即护理标准(SC),基于3D打印压力(3DP-PB)和有限元的优化
(3DP-FE)鞋垫。 3DP-PB鞋垫将以底脚形状和动态足底压力设计
虽然3DP-FE鞋垫将是根据参与者脚相互作用的模拟而设计的
鞋垫设计以优化鞋垫形状和超材料特性。在一项重复的措施研究中
我们将测量每种类型的鞋垫的峰值足底压力和压力时间积分
有25名患有糖尿病和较高较高压力的参与者。我们假设3D打印了
从足底测量值(3DP-PB)得出的个性化的超材料完成的鞋垫将
与SC鞋垫(H1)相比,峰值峰值压力和压力时间积分的降低更大。
此外,我们假设相对于其他两个鞋垫,通过患者优化了鞋垫
特定的有限元模拟(3DP-FE)将在峰值峰值压力和
压力时间积分(H2)。为了促进新型3D打印鞋垫的临床翻译,我们将携带
与患者和临床医生分散焦点小组,以获得早期的反馈和见解。这些结果
焦点小组将被定性地合成为鞋垫的可行改进。新型鞋垫
利用3D打印制造可能会提供增强的防护,以免经常
进展到截肢。此外,数字制造技术和3D制造方法具有
与大规模生产的相关障碍相关,这可以大大加快转化为诊所。 VA是
被公认为是医疗保健创新的领导者。自定义3D打印鞋垫的开发
这可能会降低截肢的风险,与VA的创新精神相吻合,并得到
弗吉尼亚州的任务“照顾那些要诞生的战斗的人。”降低退伍军人的溃疡发生率
人口有可能大大降低下限截肢的发生率并提高质量
我们的退伍军人生活。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Brittney C Muir其他文献
Brittney C Muir的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Brittney C Muir', 18)}}的其他基金
Developing and Determining Feasibility of a Novel Upper Extremity Robotic Exoskeleton to Track and Target Unwanted Joint Synergies during Repetitive Task Training in Stroke Survivors
开发并确定新型上肢机器人外骨骼的可行性,以跟踪和瞄准中风幸存者重复任务训练期间不需要的关节协同作用
- 批准号:
10805748 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Patient Specific 3D Printed Diabetic Insoles to Reduce Plantar Pressure
患者专用 3D 打印糖尿病鞋垫可减少足底压力
- 批准号:
10609500 - 财政年份:2022
- 资助金额:
-- - 项目类别:
相似国自然基金
面向3D打印平行机的精确调度算法与动态调整机制研究
- 批准号:72301196
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
适于3D打印的肌球蛋白微凝胶Pickering乳液富脂鱼糜的稳定机制
- 批准号:32360595
- 批准年份:2023
- 资助金额:33 万元
- 项目类别:地区科学基金项目
基于3D生物打印类器官模型探究PAK5调控三阴性乳腺癌铂类耐药的机制研究
- 批准号:82303979
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
构建生物3D打印类器官芯片模型研究弹性蛋白-整合素在胃癌免疫微环境中的作用
- 批准号:32371472
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
3D打印功能化仿生神经纤维修复脊髓损伤的作用及机制研究
- 批准号:82301560
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Patient Specific 3D Printed Diabetic Insoles to Reduce Plantar Pressure
患者专用 3D 打印糖尿病鞋垫可减少足底压力
- 批准号:
10609500 - 财政年份:2022
- 资助金额:
-- - 项目类别:
3D printed muscle-bone organ implant for treating large injuries
3D打印肌肉骨骼器官植入物用于治疗大面积损伤
- 批准号:
10305697 - 财政年份:2020
- 资助金额:
-- - 项目类别:
3D printed muscle-bone organ implant for treating large injuries
3D打印肌肉骨骼器官植入物用于治疗大面积损伤
- 批准号:
10393059 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Ultrasound-guided, Robotically Steerable Guidewire for Endovascular Interventions
用于血管内介入治疗的超声引导机器人可操纵导丝
- 批准号:
9914884 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Ultrasound-guided, Robotically Steerable Guidewire for Endovascular Interventions
用于血管内介入治疗的超声引导机器人可操纵导丝
- 批准号:
10155555 - 财政年份:2019
- 资助金额:
-- - 项目类别: