Investigation of Heart and Vascular Outcomes in Older Veterans

老年退伍军人心脏和血管结局的调查

基本信息

  • 批准号:
    10426071
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-04-01 至 2026-03-31
  • 项目状态:
    未结题

项目摘要

The objective of this project is to utilize a longitudinal, VA national cardiovascular disease virtual cohort to investigate traditional, and [new] risk factors (RFs), for Heart Failure (HF), Atrial Fibrillation (AF), and stroke among United States Veterans ≥ 65. This cohort will consist of contemporary and comprehensive electronic health record (EHR) data and will include continued curation and validation of complex phenotypes using innovative analytics. [The specific aims of this research in older Veterans are to: 1) Assess determinants of HF risk and prognosis after HF diagnosis in a VA Healthcare facility, 2), Assess determinants of AF risk and prognosis and 3) Assess determinants of Stroke risk and prognosis.] [During the previous funding cycle, we leveraged the VA’s large scale national longitudinal EHR data, linked to additional data sources including the Centers for Medicare and Medicaid Services (CMS) and the National Death Index (NDI) to create a comprehensive cardiovascular database. Data curation for traditional RFs, ASCVD preventive therapies, and several ASCVD outcomes was also completed in the previous funding cycle. Our new proposal will include continued data curation to include novel RFs, such as red cell indices, white blood cell indices, obstructive sleep apnea, frailty, alcohol intake, aortic stenosis, medication use, lifestyle factors, and blood measures [estimated glomerular filtration rate (eGFR), serum albumin]. We will achieve this by employing high-throughput probabilistic phenotyping and multimodal and network data modeling. Outcomes and risk factors will be evaluated over time where appropriate.] Electronic health record (EHR) data will be used to identify a baseline index date for Veterans based on an outpatient VAMC visit at which time the Veteran had blood assayed for traditional lipids. Information from the baseline and follow up visits will be obtained with database programming and will include: age, sex, systolic BP, diabetes status, cholesterol, HDL-C, TG, and CVD preventive medications. Filtering algorithms will be used for laboratory measures across the different hospital laboratories, as has already been undertaken by this research team. Similarly, BMI, glucose and hemoglobin A1c (HbA1c) measurements, and vascular disease ICD-9/10 codes will be added. [Incidence and prognosis of HF, AF, and stroke will assess the role of established and novel risk profiles. Outcomes to be analyzed include myocardial infarction, stroke, cardiovascular mortality, and all-cause mortality. For HF we will also examine HF hospital admissions and HF re-admissions within 30 days of diagnosis. We will compare currently published algorithms for the three conditions where appropriate and compare the results to our own developed regression models that include novel RFs using mediation analyses and reclassification strategies where appropriate. We will also report county- specific mapping of outcomes.]
本项目的目的是利用一个纵向的,VA国家心血管疾病虚拟队列, 研究心力衰竭(HF)、房颤(AF)和卒中的传统和[新]风险因素(RF) 美国退伍军人≥ 65。这一组将包括当代和全面的电子 健康记录(EHR)数据,并将包括使用 创新的分析。[The本研究在老年退伍军人中的具体目的是:1)评估HF的决定因素 VA医疗机构中HF诊断后的风险和预后,2)评估AF风险的决定因素, 预后和3)评估中风风险和预后的决定因素。 [在上一个资助周期中,我们利用了VA的大规模国家纵向EHR数据, 链接到其他数据源,包括医疗保险和医疗补助服务中心(CMS)和 国家死亡指数(NDI)创建一个全面的心血管数据库。传统的数据管理 RF、ASCVD预防性治疗和几种ASCVD结局也在之前的资助中完成 周期我们的新提案将包括持续的数据管理,包括新的RF,如红细胞指数, 白色血细胞指数、阻塞性睡眠呼吸暂停、虚弱、酒精摄入、主动脉瓣狭窄、药物使用、生活方式 因素和血液指标[估计肾小球滤过率(eGFR),血清白蛋白]。我们将实现这一目标 通过采用高通量概率表型分析和多模态和网络数据建模。成果 风险因素将在适当的时候进行评估。] 电子健康记录(EHR)数据将用于确定退伍军人的基线索引日期, 一次门诊VAMC访问,当时退伍军人进行了传统脂质的血液分析。信息从 基线和随访访视将通过数据库编程获得,包括:年龄、性别、收缩压 血压、糖尿病状态、胆固醇、HDL-C、TG和CVD预防药物。过滤算法将是 用于不同医院实验室的实验室测量,正如本组织已经采取的那样, 研究团队。同样,BMI、血糖和血红蛋白A1 c(HbA 1c)测量以及血管疾病 将添加ICD-9/10代码。 [HF、AF和卒中的发生率和预后将评估确定的和新的风险的作用, 数据区.分析的结局包括心肌梗死、卒中、心血管死亡率和全因死亡率。 mortality.对于HF,我们还将检查HF住院和HF再入院的30天内, 诊断.我们将比较目前公布的算法的三个条件,在适当的情况下, 将结果与我们自己开发的回归模型进行比较,其中包括使用中介分析的新RF 和适当的重新分类战略。我们还将报告具体国家的成果地图。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kelly Cho其他文献

Kelly Cho的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kelly Cho', 18)}}的其他基金

Investigation of Heart and Vascular Outcomes in Older Veterans
老年退伍军人心脏和血管结局的调查
  • 批准号:
    10618301
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
Cardiovascular Disease Risk Factors, Prevalent Cardiovascular Disease, and Genetics in the Million Veteran Program
百万退伍军人计划中的心血管疾病危险因素、流行的心血管疾病和遗传学
  • 批准号:
    9031899
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
Prediction of CVD Risk in Veterans
退伍军人心血管疾病风险预测
  • 批准号:
    9220725
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
Prediction of CVD Risk in Veterans
退伍军人心血管疾病风险预测
  • 批准号:
    8967209
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
Prediction of CVD Risk in Veterans
退伍军人心血管疾病风险预测
  • 批准号:
    8633234
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
Prediction of CVD Risk in Veterans
退伍军人心血管疾病风险预测
  • 批准号:
    8815115
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:

相似海外基金

Hormone therapy, age of menopause, previous parity, and APOE genotype affect cognition in aging humans.
激素治疗、绝经年龄、既往产次和 APOE 基因型会影响老年人的认知。
  • 批准号:
    495182
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Investigating how alternative splicing processes affect cartilage biology from development to old age
研究选择性剪接过程如何影响从发育到老年的软骨生物学
  • 批准号:
    2601817
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Studentship
RAPID: Coronavirus Risk Communication: How Age and Communication Format Affect Risk Perception and Behaviors
RAPID:冠状病毒风险沟通:年龄和沟通方式如何影响风险认知和行为
  • 批准号:
    2029039
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Neighborhood and Parent Variables Affect Low-Income Preschool Age Child Physical Activity
社区和家长变量影响低收入学龄前儿童的身体活动
  • 批准号:
    9888417
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
The affect of Age related hearing loss for cognitive function
年龄相关性听力损失对认知功能的影响
  • 批准号:
    17K11318
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
  • 批准号:
    9320090
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
  • 批准号:
    10166936
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
  • 批准号:
    9761593
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
How age dependent molecular changes in T follicular helper cells affect their function
滤泡辅助 T 细胞的年龄依赖性分子变化如何影响其功能
  • 批准号:
    BB/M50306X/1
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Training Grant
Inflamm-aging: What do we know about the effect of inflammation on HIV treatment and disease as we age, and how does this affect our search for a Cure?
炎症衰老:随着年龄的增长,我们对炎症对艾滋病毒治疗和疾病的影响了解多少?这对我们寻找治愈方法有何影响?
  • 批准号:
    288272
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Miscellaneous Programs
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了