Point-of-care antimicrobial susceptibility testing based on simultaneous tracking of multi-phenotypic features of single bacterial cells
基于同时跟踪单个细菌细胞的多表型特征的护理点抗菌药物敏感性测试
基本信息
- 批准号:10426291
- 负责人:
- 金额:$ 107.97万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-07-25 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectAgreementAntibiotic ResistanceAntibiotic TherapyAntibioticsAntimicrobial ResistanceAntimicrobial susceptibilityArizonaBacterial InfectionsBiosensing TechniquesBiosensorBlood CellsCategoriesCellsClinicClinicalClinical MicrobiologyCommunicable DiseasesComputer softwareCrystallizationDataData AnalysesDetectionDevelopmentDevice or Instrument DevelopmentDiagnosisEnterobacteriaceaeExtended-spectrum β-lactamaseFaceGrowthHospitalsHourImageImaging TechniquesImmunotherapyIndividualInfectionLaboratoriesMachine LearningMeasuresMethodsMicrobiologyMicroscopeMicroscopyMorphologyMotionOpticsOrganismPathogen detectionPatientsPerformancePersonsPhenotypePilot ProjectsPoint of Care TechnologyPredispositionPrimary Health CareProductionProtocols documentationPublic HealthResearch PersonnelResistanceRiskSamplingSpecificitySpeedSystemTechniquesTechnologyTestingTimeTrainingUniversitiesUrinary tract infectionUrineVaccinesValidationVirotherapyVisitWorkantimicrobialautomated algorithmbacterial resistancebasebioelectronicscarbapenem-resistant Enterobacteriaceaeclinical diagnosisclinically relevantcombatdensitydesignhealth care settingsimage processinginnovationinstrumentlight scatteringmachine learning algorithmmachine learning modelmultidisciplinarypathogenpoint of carepoint-of-care diagnosisprototyperesearch clinical testingtechnology developmenttechnology validation
项目摘要
ABSTRACT
Antibiotic resistance has become a significant public health threat. To combat the problem, a rapid pathogen
identification (ID) and antimicrobial susceptibility testing (AST) technology is needed to provide timely diagno-
sis of resistant infections and delivery of accurate antibiotic treatment at primary health-care settings, includ-
ing hospitals and point-of-care (POC). The present project aims to develop a point-of-care AST (POCASTTM)
technology based on a large-image-volume microscopy technique that enables direct detection of individual
bacterial cells in clinical samples without culturing or pathogen isolation, and a machine-learning model that
allows fast determination of pathogen and susceptibility. To establish the technology, the project will focus on
urinary tract infections (UTIs). UTIs affect millions of people annually, and the pathogens that usually cause
UTIs are the organisms that pose the highest threat of antimicrobial resistance, including carbapenem-
resistant Enterobacteriaceae (CRE) and extended spectrum β-lactamase (ESBL)-producing Enterobacteri-
aceae.
This project will focus on: 1) developing the large-image-volume microscopy and machine learning model for
simultaneous tracking of multi-phenotypic features of single bacterial cells directly in patient urine sample, and
performing rapid automatic pathogen ID and AST for UTIs; 2) building prototype instrument, and 3) validating
the instrument for UTIs using large scale clinical samples. Successful development and validation of the tech-
nology will enable precise antibiotic prescription on the same day of patient visit.
The project will be carried out by a multidisciplinary team with expertise in biosensors (Biodesign Center for
Bioelectronics and Biosensors, ASU), microbiology and infectious diseases (Biodesign Center for Immuno-
therapy, Vaccines and Virotherapy, ASU), biomedical instrument development and production (Biosensing
Instrument Inc.), and clinical testing (Clinical Microbiology Laboratory, Mayo Clinic).
!
摘要
抗生素耐药性已成为一个重大的公共卫生威胁。为了解决这个问题,一种快速的病原体
需要鉴定(ID)和抗菌药物敏感性测试(AST)技术来提供及时的诊断,
在初级卫生保健环境中监测耐药性感染和提供准确的抗生素治疗,包括-
医院和护理点(POC)。本项目旨在开发一种即时护理AST(POCASTTM)
基于大图像体积显微镜技术的技术,能够直接检测个体
在没有培养或病原体分离的情况下在临床样品中检测细菌细胞,以及机器学习模型,
可以快速确定病原体和易感性。为了建立该技术,该项目将侧重于
尿路感染(UTIs)。UTI每年影响数百万人,而通常引起UTI的病原体
UTI是对包括碳青霉烯类在内的抗生素耐药性构成最大威胁的微生物,
耐药肠杆菌科(CRE)和产超广谱β-内酰胺酶(ESBL)的肠杆菌,
科。
该项目将重点关注:1)开发大图像体积显微镜和机器学习模型,
直接在患者尿样中同时追踪单个细菌细胞的多表型特征,以及
对UTI进行快速自动病原体ID和AST; 2)建立原型仪器; 3)验证
使用大规模临床样本的UTI仪器。技术的成功开发和验证-
nology将在患者就诊当天提供精确的抗生素处方。
该项目将由一个具有生物传感器专业知识的多学科团队(生物设计中心)进行。
生物电子学和生物传感器,亚利桑那州立大学),微生物学和传染病(生物设计中心免疫,
治疗,疫苗和病毒治疗,ASU),生物医学仪器开发和生产(生物传感
Instrument Inc.),和临床试验(临床微生物学实验室,马约诊所)。
!
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Direct Antimicrobial Susceptibility Testing on Clinical Urine Samples by Optical Tracking of Single Cell Division Events.
- DOI:10.1002/smll.202004148
- 发表时间:2020-12
- 期刊:
- 影响因子:0
- 作者:Zhang F;Jiang J;McBride M;Yang Y;Mo M;Iriya R;Peterman J;Jing W;Grys T;Haydel SE;Tao N;Wang S
- 通讯作者:Wang S
Rapid Antimicrobial Susceptibility Testing on Clinical Urine Samples by Video-Based Object Scattering Intensity Detection.
- DOI:10.1021/acs.analchem.1c00019
- 发表时间:2021-05-11
- 期刊:
- 影响因子:7.4
- 作者:Zhang F;Jiang J;McBride M;Zhou X;Yang Y;Mo M;Peterman J;Grys T;Haydel SE;Tao N;Wang S
- 通讯作者:Wang S
Rapid Detection of Urinary Tract Infection in 10 min by Tracking Multiple Phenotypic Features in a 30 s Large-Volume Scattering Video of Urine Microscopy.
- DOI:10.1021/acssensors.2c00788
- 发表时间:2022-08-26
- 期刊:
- 影响因子:8.9
- 作者:Zhang, Fenni;Mo, Manni;Jiang, Jiapei;Zhou, Xinyu;McBride, Michelle;Yang, Yunze;Reilly, Kenta S.;Grys, Thomas E.;Haydel, Shelley E.;Tao, Nongjian;Wang, Shaopeng
- 通讯作者:Wang, Shaopeng
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SHAOPENG WANG其他文献
SHAOPENG WANG的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SHAOPENG WANG', 18)}}的其他基金
Optical imaging of size, charge, mobility and binding of single proteins
单个蛋白质的大小、电荷、迁移率和结合的光学成像
- 批准号:
10521663 - 财政年份:2022
- 资助金额:
$ 107.97万 - 项目类别:
Optical imaging of size, charge, mobility and binding of single proteins
单个蛋白质的大小、电荷、迁移率和结合的光学成像
- 批准号:
10687006 - 财政年份:2022
- 资助金额:
$ 107.97万 - 项目类别:
A Virion-Display Oscillator Array and Detection Platform for Quantification of Transmembrane Protein Binding Kinetics
用于量化跨膜蛋白结合动力学的病毒粒子显示振荡器阵列和检测平台
- 批准号:
10115647 - 财政年份:2020
- 资助金额:
$ 107.97万 - 项目类别:
A Virion-Display Oscillator Array and Detection Platform for Quantification of Transmembrane Protein Binding Kinetics
用于量化跨膜蛋白结合动力学的病毒粒子显示振荡器阵列和检测平台
- 批准号:
10357577 - 财政年份:2020
- 资助金额:
$ 107.97万 - 项目类别:
A Virion-Display Oscillator Array and Detection Platform for Quantification of Transmembrane Protein Binding Kinetics
用于量化跨膜蛋白结合动力学的病毒粒子显示振荡器阵列和检测平台
- 批准号:
9889569 - 财政年份:2020
- 资助金额:
$ 107.97万 - 项目类别:
Point-of-care antimicrobial susceptibility testing based on simultaneous tracking of multi-phenotypic features of single bacterial cells
基于同时跟踪单个细菌细胞的多表型特征的护理点抗菌药物敏感性测试
- 批准号:
10188407 - 财政年份:2018
- 资助金额:
$ 107.97万 - 项目类别:
Quantitative label-free imaging of membrane protein interaction kinetics on cells
细胞膜蛋白相互作用动力学的定量无标记成像
- 批准号:
8882482 - 财政年份:2014
- 资助金额:
$ 107.97万 - 项目类别:
Quantitative label-free imaging of membrane protein interaction kinetics on cells
细胞膜蛋白相互作用动力学的定量无标记成像
- 批准号:
9086372 - 财政年份:2014
- 资助金额:
$ 107.97万 - 项目类别:
Quantitative label-free imaging of electrical activities in cells
细胞电活动的定量无标记成像
- 批准号:
10242180 - 财政年份:2014
- 资助金额:
$ 107.97万 - 项目类别:
Quantitative label-free imaging of electrical activities in cells
细胞电活动的定量无标记成像
- 批准号:
10001533 - 财政年份:2014
- 资助金额:
$ 107.97万 - 项目类别:
相似海外基金
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 107.97万 - 项目类别:
Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 107.97万 - 项目类别:
Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 107.97万 - 项目类别:
Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 107.97万 - 项目类别:
Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 107.97万 - 项目类别:
Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 107.97万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 107.97万 - 项目类别:
Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
- 批准号:
2301846 - 财政年份:2023
- 资助金额:
$ 107.97万 - 项目类别:
Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 107.97万 - 项目类别:
Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
- 批准号:
23K16076 - 财政年份:2023
- 资助金额:
$ 107.97万 - 项目类别:
Grant-in-Aid for Early-Career Scientists














{{item.name}}会员




