Targeting antioxidant vulnerabilities in KEAP1/NRF2 mutant NSCLC
针对 KEAP1/NRF2 突变 NSCLC 中的抗氧化脆弱性
基本信息
- 批准号:10428798
- 负责人:
- 金额:$ 11.34万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAnabolismAntioxidantsBiologyCancer CenterCell DeathChronicComplexCritical PathwaysCytosolDataDefectDependenceDevelopment PlansDisulfidesDrug Metabolic DetoxicationElectron TransportEnvironmentEnzymesEquilibriumGenesGlutathioneGoalsHomeostasisIncentivesJournalsKnowledgeLaboratory ResearchLipid PeroxidesMaintenanceMalignant NeoplasmsMalignant neoplasm of lungMediatingMediator of activation proteinMentorsMitochondriaMutateMutationNon-Small-Cell Lung CarcinomaOxidation-ReductionOxidative PhosphorylationOxidative StressOxidoreductasePathogenicityPathway interactionsPatientsPeer ReviewPlayPositioning AttributeProductionProteinsPublishingRadiation therapyReactive Oxygen SpeciesResearchResistanceRoleSeleniumSignal TransductionSomatic MutationSulfhydryl CompoundsSystemTXN geneTherapeuticTrainingTranscriptional RegulationTranslationsUp-Regulationantioxidant enzymebasecareer developmentdesigndietary manipulationdithioleffective therapyglutathione peroxidasein vivolung cancer cellmutantnoveloxidationprogramsselenoproteintargeted treatmenttherapeutic targetthioredoxin reductasetranscription factoruptake
项目摘要
The transcription factor NRF2 is a central regulator of cellular redox balance. Mutations in NRF2 and its negative
regulator KEAP1 are found in 15-34% of non-small cell lung cancer (NSCLC). The result of these mutations is
constitutive NRF2 activation and chronic induction of a battery of NRF2 target genes, which confers resistance
to chemo/radiation therapy. While targeting NRF2 holds great therapeutic potential, there is no effective strategy
to inhibit the consequences of pathogenic KEAP1/NRF2 signaling. It is therefore critical to identify and
understand vulnerabilities of KEAP1/NRF2 mutant NSCLC to develop effective therapies for patients harboring
these mutations. NRF2 controls the transcription of many antioxidant enzymes, thereby regulating the
detoxification of reactive oxygen species. However, it remains largely unknown which specific antioxidant
enzymes can be therapeutically targeted to reverse the profound resistance of NRF2/KEAP1 mutations to
oxidative stress, the key mediator of chemo/radiation therapy. Glutathione (GSH)/GSH reductase (GSR) and
thioredoxin (TXN)/thioredoxin reductase (TXNRD) are two parallel, compensating thiol-dependent antioxidant
pathways that critically regulate and maintain cellular thiol redox homeostasis and protein dithiol/disulfide
balance. My preliminary results indicate that both GSR and TXNRD1 are strongly induced by NRF2 activation
and contribute to the intrinsic resistance to the pro-oxidant therapies. However, they play unique roles in different
cellular compartments. Specifically, NRF2 induced GSR acts to protect mitochondria from oxidation, while
TXNRD1 protects the cytosol. Further, TXNRD1 upregulation is associated with the suppression of other
selenoproteins, suggesting that NRF2 activation causes an imbalance in selenium distribution. Given the key
role of selenoprotein in redox biology, the switch in the production of the different selenoproteins induced by
NRF2 activation may create novel vulnerabilities of NRF2 active NSCLC with therapeutic potential. This proposal
is designed to further strengthen these observations by defining the mechanistic basis of how GSR contributes
to NRF2-mediated resistance to oxidative stress, and to leverage the imbalanced selenoprotein translation to
develop potent therapeutic strategies for KEAP1/NRF2 mutant NSCLC. The following specific aims are pursued
in this application: Aim 1. Investigate the role of GSR in NRF2-mediated resistance to oxidative stress. Aim 2.
Define the role of NRF2 as a modulator of the selenoproteome in NSCLC. The knowledge and scientific expertise
that I acquire from these proposed studies will facilitate my transition to an independent position. My long-term
goal is to study the antioxidant enzymes in cancer, with a major focus on selenoproteins. In addition to the
scientific goal, I have outlined a detailed career development plan to obtain skillsets that are key for leading a
research laboratory and establishing a strong research program. I will conduct the proposed research and carry
out the training plan under the guidance of my mentoring committee. I will embark on the excellent academic
environment provided by Moffitt Cancer Center to achieve these goals and transition to an independent position.
转录因子NRF2是细胞氧化还原平衡的中心调节因子。NRF2的突变及其阴性
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Chang JIANG其他文献
Chang JIANG的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Chang JIANG', 18)}}的其他基金
Targeting antioxidant vulnerabilities in KEAP1/NRF2 mutant NSCLC
针对 KEAP1/NRF2 突变 NSCLC 中的抗氧化脆弱性
- 批准号:
10902960 - 财政年份:2022
- 资助金额:
$ 11.34万 - 项目类别:
相似海外基金
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中骨-脂肪相互作用
- 批准号:
10590611 - 财政年份:2022
- 资助金额:
$ 11.34万 - 项目类别:
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中的骨-脂肪相互作用
- 批准号:
10706006 - 财政年份:2022
- 资助金额:
$ 11.34万 - 项目类别:
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中骨-脂肪相互作用
- 批准号:
10368975 - 财政年份:2021
- 资助金额:
$ 11.34万 - 项目类别:
BCCMA: Foundational Research to Act Upon and Resist Conditions Unfavorable to Bone (FRACTURE CURB): Combined long-acting PTH and calcimimetics actions on skeletal anabolism
BCCMA:针对和抵抗不利于骨骼的条件的基础研究(遏制骨折):长效 PTH 和拟钙剂联合作用对骨骼合成代谢的作用
- 批准号:
10365254 - 财政年份:2021
- 资助金额:
$ 11.34万 - 项目类别:
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中骨-脂肪相互作用
- 批准号:
10202896 - 财政年份:2021
- 资助金额:
$ 11.34万 - 项目类别:
BCCMA: Foundational Research to Act Upon and Resist Conditions Unfavorable to Bone (FRACTURE CURB): Combined long-acting PTH and calcimimetics actions on skeletal anabolism
BCCMA:针对和抵抗不利于骨骼的条件的基础研究(遏制骨折):长效 PTH 和拟钙剂联合作用对骨骼合成代谢的作用
- 批准号:
10531570 - 财政年份:2021
- 资助金额:
$ 11.34万 - 项目类别:
Dissecting molecular mechanisms implicated in age- and osteoarthritis-related decline in anabolism in articular cartilage
剖析与年龄和骨关节炎相关的关节软骨合成代谢下降有关的分子机制
- 批准号:
10541847 - 财政年份:2019
- 资助金额:
$ 11.34万 - 项目类别:
Dissecting molecular mechanisms implicated in age- and osteoarthritis-related decline in anabolism in articular cartilage
剖析与年龄和骨关节炎相关的关节软骨合成代谢下降有关的分子机制
- 批准号:
10319573 - 财政年份:2019
- 资助金额:
$ 11.34万 - 项目类别:
Dissecting molecular mechanisms implicated in age- and osteoarthritis-related decline in anabolism in articular cartilage
剖析与年龄和骨关节炎相关的关节软骨合成代谢下降有关的分子机制
- 批准号:
10062790 - 财政年份:2019
- 资助金额:
$ 11.34万 - 项目类别:
Promotion of NAD+ anabolism to promote lifespan
促进NAD合成代谢以延长寿命
- 批准号:
DE170100628 - 财政年份:2017
- 资助金额:
$ 11.34万 - 项目类别:
Discovery Early Career Researcher Award