Microstructure and connectivity modeling from the cortex to the spinal cord in Multiple Sclerosis
多发性硬化症从皮质到脊髓的微观结构和连接建模
基本信息
- 批准号:10429762
- 负责人:
- 金额:$ 15.78万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-06-01 至 2026-02-28
- 项目状态:未结题
- 来源:
- 关键词:AddressAffectAnatomyAxonBiological MarkersBiophysical ProcessBrainBrain MappingBrain StemBrain imagingCentral Nervous System DiseasesClinicalClinical assessmentsComplexCorticospinal TractsDemyelinationsDeteriorationDevelopmentDiffusionDiffusion Magnetic Resonance ImagingDiseaseDisease ProgressionEdemaEvaluationEvolutionFiberFoundationsGoalsHealthHumanImageImage AnalysisImpairmentInvestigationLesionLiteratureMagnetic Resonance ImagingMeasuresMedical ImagingMethodsModelingMorphologic artifactsMotor PathwaysMultiple SclerosisMultiple Sclerosis LesionsNeuraxisNeurologicPathologicPathologyPathway interactionsPrognosisRadiology SpecialtyReproducibilityResearchResolutionRoleSensitivity and SpecificitySpecificitySpinal CordSpinal Cord DiseasesSpinal cord damageStructureSwellingTechniquesTechnologyTimeTissue ModelTissuesWateraxon injurybasebrain magnetic resonance imagingbrain pathwayburden of illnesscohesioncohortdisabilityimage processingimprovedin vivoindexingmagnetic resonance imaging biomarkermotor impairmentmultiple sclerosis patientnervous system disorderspinal pathwaystemtractographywhite matterwhite matter damage
项目摘要
Diffusion magnetic resonance imaging (MRI) enables the ability to probe both tissue microstructure and
structural connectivity of the central nervous system. However, there are no validated methods to model and
interrogate the pathways that connect the brain and spinal cord, which inhibits our ability to fully characterize
and understand the complete damage that may occur in neurological disorders. For example, disease
progression in patients with multiple sclerosis (MS) is known to stem from axonal damage in both the brain and
spinal cord, yet, coordinated medical image analysis of both structures simultaneously has not been shown.
Thus, the overall goal of the proposed research is to develop and optimize simultaneous tissue microstructural
mapping of the brain and spinal cord for clinical assessment of MS using magnetic resonance imaging (MRI),
specifically interrogating the microstructure and connectivity of motor pathways of the central nervous system.
The critical challenges to this goal are (1) quantifying tissue microstructure of the brain and spinal cord in
unison has not been performed, (2) clinical MRI lacks specificity for microstructural tissue integrity, and (3)
there are few methods available that allow mapping of MS lesions and pathological abnormalities in relation to
critical fiber pathways. To address this, in Aim 1 we will develop a cohesive acquisition and image processing
pipeline, minimizing artifacts and maximizing reproducibility, in order to facilitate a unified analysis of the
central nervous system. In Aim 2, we will utilize diffusion MRI modeling and fiber tractography to characterize
tissue microstructure and connectivity from the cortex to the spinal cord. Modeling will enable quantification of
highly specific pathophysiological indices of edema, axonal swelling, demyelination, and axonal loss, whereas
tractography will facilitate feature localization to specific white matter pathways and along specific pathways.
Finally, evaluate microstructure and connectivity of the motor pathways to interrogate pathology in MS,
quantifying radiological biomarkers over space and time that may contribute to impairment in this disease. The
overall impact of this proposal will be quantitative biomarkers for disease burden that may improve the value of
imaging the brain and spinal cord together as it relates to understanding pathology in vivo.
扩散磁共振成像(MRI)能够探测组织微结构和
中枢神经系统的结构性连接。然而,还没有经过验证的方法来建模和
询问连接大脑和脊髓的路径,这抑制了我们充分描述
并了解在神经紊乱中可能发生的完全损害。例如,疾病
多发性硬化症(MS)患者的进展已知源于大脑和大脑中的轴突损伤
然而,同时对两个结构进行协调的医学图像分析还没有显示出来。
因此,拟议研究的总体目标是开发和优化同步的组织微结构
使用磁共振成像(MRI)对多发性硬化症进行临床评估的脑和脊髓标测,
特别是询问中枢神经系统运动通路的微观结构和连通性。
实现这一目标的关键挑战是(1)对大脑和脊髓的组织微结构进行量化
(2)临床MRI缺乏对微结构组织完整性的特异性;(3)
几乎没有可用的方法可以映射与以下相关的MS损害和病理异常
关键的纤维通路。为了解决这个问题,在目标1中,我们将开发一个内聚式采集和图像处理
流水线,最大限度地减少伪影和最大限度地提高再现性,以便促进对
中枢神经系统。在目标2中,我们将利用弥散磁共振建模和纤维束成像来表征
组织微结构和从皮质到脊髓的连通性。建模将使量化
高度特异的水肿、轴突肿胀、脱髓鞘和轴突丢失的病理生理指标,而
纤维束造影术将有助于将特征定位到特定的白质通路和沿着特定的通路。
最后,评估运动通路的微观结构和连通性,以询问MS的病理,
在空间和时间上量化可能导致这种疾病损害的放射生物标记物。这个
这项提案的总体影响将是疾病负担的量化生物标记物,可能会提高
对大脑和脊髓进行成像,因为它与了解活体病理有关。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kurt G Schilling其他文献
Neuronal microstructural changes in the human brain are associated with neurocognitive aging.
人脑神经元微观结构的变化与神经认知衰老有关。
- DOI:
10.1111/acel.14166 - 发表时间:
2024 - 期刊:
- 影响因子:7.8
- 作者:
Kavita Singh;Stephanie Barsoum;Kurt G Schilling;Yang An;Luigi Ferrucci;D. Benjamini - 通讯作者:
D. Benjamini
Kurt G Schilling的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kurt G Schilling', 18)}}的其他基金
Microstructure and connectivity modeling from the cortex to the spinal cord in Multiple Sclerosis
多发性硬化症从皮质到脊髓的微观结构和连接建模
- 批准号:
10630326 - 财政年份:2022
- 资助金额:
$ 15.78万 - 项目类别:
相似海外基金
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 15.78万 - 项目类别:
Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 15.78万 - 项目类别:
Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 15.78万 - 项目类别:
Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 15.78万 - 项目类别:
Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 15.78万 - 项目类别:
Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 15.78万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 15.78万 - 项目类别:
Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
- 批准号:
2301846 - 财政年份:2023
- 资助金额:
$ 15.78万 - 项目类别:
Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 15.78万 - 项目类别:
Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
- 批准号:
23K16076 - 财政年份:2023
- 资助金额:
$ 15.78万 - 项目类别:
Grant-in-Aid for Early-Career Scientists














{{item.name}}会员




