Fast Multi-dimensional Diffusion MRI with Sparse Sampling and Model-based Deep Learning Reconstruction

具有稀疏采样和基于模型的深度学习重建的快速多维扩散 MRI

基本信息

  • 批准号:
    10428538
  • 负责人:
  • 金额:
    $ 34.03万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-06-15 至 2025-02-28
  • 项目状态:
    未结题

项目摘要

Project Summary: Neurodegenerative disorders are a significant public health and economic problem and are the leading cause of disability worldwide. Understanding the specific degenerative processes that are actively progressing over the course of the illness is crucial for developing targeted drugs therapies and deciding treatment options. Additionally, understanding the structural connectivity changes to tease apart the specific circuitry affected is crucial in developing circuit specific non-invasive brain stimulation therapies. Diffusion- based MRI assays can provide microstructural measures that are highly sensitive to (i) the neurodegenerative processes and (ii) connectivity changes. Advanced modeling approaches can be utilized to further enhance the specificity of the microstructural measures to the underlying neurodegenerative processes. However, their utility is often limited to pure white matter regions. At the typical spatial resolution of diffusion MRI (~2mm isotropic voxel size), significant partial volume effects exist in most brain voxels (e.g., voxels with multiple tissue types, heterogenous fibers with different properties). In whole brain studies, this compromises the specificity of the disease processes identified by the advanced modeling approaches; it also contributes to inaccurate connectivity mapping. Additionally, the diffusion parameter encoding space is currently limited to one or two shells of low b-values (b<2000s/mm2), which limits the unique determination of several relevant microstructural parameters. The main objective of the proposal is the development, validation and clinical translation of a diffusion MRI assay that enable efficient encoding of diffusion parameter space at sub- millimeter voxel resolution for joint microstructure and connectivity mapping in the whole brain. Our overall hypothesis is that the proposed framework can significantly improve the validity of microstructural modeling in most brain voxels. The proposed development will make use of SNR-efficient 3D multi-slab acquisitions. Coupled with time-efficient sparse k-q sampling, the encoding will span over multiple b-shells. To allow the unique determination of several relevant microstructural parameters, multicompartmental T2 information will be utilized. The proposed developments will be enabled by two advanced reconstruction methods: structured low- rank matrix completion, a novel integrative framework for MRI reconstructions that enables several capabilities including multi-echo imaging and self-calibrating reconstruction; and model-based deep learning, a novel deep architecture to solve MR reconstruction algorithms using neural networks in a systematic fashion. These methods overcome several inefficiencies associated with extending the 3D multi-slab acquisition for multi- dimensional imaging in the k-q-TE space. To ensure scientific rigor, we will comprehensively validate our technology on dedicated diffusion phantoms along with healthy volunteers using different quantification metrics. We also validate the capability of the dMRI assay using a multi-modal MRI study in a cross-sectional study on a cohort of Huntington's disease.
项目摘要:神经退行性疾病是一个重大的公共卫生和经济问题

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Merry Mani其他文献

Merry Mani的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Merry Mani', 18)}}的其他基金

Fast Multi-dimensional Diffusion MRI with Sparse Sampling and Model-based Deep Learning Reconstruction
具有稀疏采样和基于模型的深度学习重建的快速多维扩散 MRI
  • 批准号:
    10183606
  • 财政年份:
    2021
  • 资助金额:
    $ 34.03万
  • 项目类别:
Fast Multi-dimensional Diffusion MRI with Sparse Sampling and Model-based Deep Learning Reconstruction
具有稀疏采样和基于模型的深度学习重建的快速多维扩散 MRI
  • 批准号:
    10620716
  • 财政年份:
    2021
  • 资助金额:
    $ 34.03万
  • 项目类别:

相似海外基金

SHINE: Origin and Evolution of Compressible Fluctuations in the Solar Wind and Their Role in Solar Wind Heating and Acceleration
SHINE:太阳风可压缩脉动的起源和演化及其在太阳风加热和加速中的作用
  • 批准号:
    2400967
  • 财政年份:
    2024
  • 资助金额:
    $ 34.03万
  • 项目类别:
    Standard Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
  • 批准号:
    2328975
  • 财政年份:
    2024
  • 资助金额:
    $ 34.03万
  • 项目类别:
    Continuing Grant
EXCESS: The role of excess topography and peak ground acceleration on earthquake-preconditioning of landslides
过量:过量地形和峰值地面加速度对滑坡地震预处理的作用
  • 批准号:
    NE/Y000080/1
  • 财政年份:
    2024
  • 资助金额:
    $ 34.03万
  • 项目类别:
    Research Grant
Market Entry Acceleration of the Murb Wind Turbine into Remote Telecoms Power
默布风力涡轮机加速进入远程电信电力市场
  • 批准号:
    10112700
  • 财政年份:
    2024
  • 资助金额:
    $ 34.03万
  • 项目类别:
    Collaborative R&D
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
  • 批准号:
    2328973
  • 财政年份:
    2024
  • 资助金额:
    $ 34.03万
  • 项目类别:
    Continuing Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
  • 批准号:
    2328972
  • 财政年份:
    2024
  • 资助金额:
    $ 34.03万
  • 项目类别:
    Continuing Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
  • 批准号:
    2332916
  • 财政年份:
    2024
  • 资助金额:
    $ 34.03万
  • 项目类别:
    Standard Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
  • 批准号:
    2332917
  • 财政年份:
    2024
  • 资助金额:
    $ 34.03万
  • 项目类别:
    Standard Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
  • 批准号:
    2328974
  • 财政年份:
    2024
  • 资助金额:
    $ 34.03万
  • 项目类别:
    Continuing Grant
Radiation GRMHD with Non-Thermal Particle Acceleration: Next-Generation Models of Black Hole Accretion Flows and Jets
具有非热粒子加速的辐射 GRMHD:黑洞吸积流和喷流的下一代模型
  • 批准号:
    2307983
  • 财政年份:
    2023
  • 资助金额:
    $ 34.03万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了