High-Throughput, Multiplexing-Ready Intracellular Pressure Probes
高通量、可多重使用的细胞内压力探针
基本信息
- 批准号:10431428
- 负责人:
- 金额:$ 26.88万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-17 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalActomyosinAddressAnteriorCalibrationCell ShapeCell SizeCell divisionCell membraneCell physiologyCellsCellular biologyCoinComplexContractsCytoplasmCytoskeletonDNADataDevelopmentElectrodesElectroporationEmbryoEnergy TransferEquilibriumExhibitsExtracellular MatrixFibroblastsFluorescence Resonance Energy TransferFosteringFour-dimensionalHeterogeneityHumanImageIndividualLipid BilayersLiposomesMapsMeasurementMeasuresMechanicsMembraneMethodsMicroelectrodesMotionNanotechnologyPhenotypePhysiologicalPositioning AttributeProcessReaction TimeResearchResolutionRuptureShapesSignal TransductionSiliconStructureSubcellular SpacesSurfaceTechnologyTestingTimeVacuumVariantWaterbasebiophysical propertiescell behaviorcell cortexcell motilitycytotoxicitydensitydesignextracellularfluorophoreinsightmacromoleculemigrationmultiplexed imagingnanoformsnanosizednovelperformance testspressurepressure sensorpreventprogramsrational designresponsescaffoldsensorspatiotemporalstemsubmicrontemporal measurementtoolwater channel
项目摘要
PROJECT SUMMARY
It is known that at the level of a single cell, intracellular pressure governs motility, shape, volume, and proliferation.
Mounting evidence suggests that pressure can vary within a single cell and the compartmentalization of pressure
may be essential for dynamic cell function. Thus, it is essential to develop approaches to map the heterogeneous
intracellular pressure within a single cell at submicron resolution given the technical limitations of the current
technology. Specifically, it is challenging to study how intracellular pressure regulates cellular processes, such
as protrusion of the cell cortex, heterogeneously and dynamically, to result in certain phenotypes, such as
directional migration. This challenge stems from the lack of nano-sized sensors that are compatible for high-
throughput multiplexing imaging so that local intracellular pressure and other dynamic processes can be
simultaneously measured across the cell.
Herein we propose to develop a high-throughput, multiplexing-ready intracellular probe in the form of nano-
sized liposomes enclosed by DNA-based scaffold with aquaporin molecules distributed in the lipid bilayer.
Joining the DNA scaffold and the aquaporin-embedded liposome are elastic DNA tethers conjugated with
Foster Resonance Energy Transfer (FRET) donor and acceptor fluorophores at prescribed spacing, which
extend or contract as the result of pressure-dependent changes to liposome volume. The nano-sized pressure
sensor, coined “aquaporin-laced liposome pressure sensor (ALPS)”, will be delivered to the cytoplasm in
quantity. Upon pressure changes in the cytoplasm, the internalized ALPS will change its volume by water efflux
or influx through the aquaporin, while the DNA scaffold stabilizes the liposome to prevent collapse or rupture.
As a proof of concept, we will then use ALPS to map the dynamic pressure field induced within single cells
using compartmentalized pressure to migrate within 3D matrix; the results will be compared to the direct
measurements obtained by 0.5-μm micro-electrodes with limited spatial resolution, the current state-of-art. If
successful, we will generate a novel tool for measuring intracellular pressure with unprecedented
spatiotemporal resolution, which promises to provide insights on how local intracellular pressure changes
dynamically as cells navigate the 3D terrain.
项目摘要
众所周知,在单个细胞的水平上,细胞内压力控制运动性、形状、体积和增殖。
越来越多的证据表明,压力可以在单个细胞内变化,压力的区域化
可能对于动态细胞功能至关重要。因此,有必要开发方法来映射异质
在亚微米分辨率下的单个细胞内的细胞内压力
技术.具体来说,研究细胞内压力如何调节细胞过程是具有挑战性的,例如
作为细胞皮层的突起,不均匀地和动态地,导致某些表型,如
定向迁移这一挑战源于缺乏纳米尺寸的传感器,这些传感器可兼容高性能的传感器。
通量多路成像,使得局部细胞内压力和其他动态过程可以
在整个细胞中同时测量。
在此,我们建议开发一种高通量的,多路复用的细胞内探针的形式,纳米-
由基于DNA的支架包围的大小的脂质体,水通道蛋白分子分布在脂质双层中。
连接DNA支架和水通道蛋白包埋的脂质体的是弹性DNA系链,其缀合有
促进共振能量转移(FRET)供体和受体荧光团在规定的间距,
由于脂质体体积的压力依赖性变化而延伸或收缩。纳米级的压力
传感器,创造了“水通道蛋白-花边脂质体压力传感器(ALPS)",将被交付到细胞质中,
数量。当细胞质中的压力变化时,内化的ALPS将通过水流出改变其体积
或通过水通道蛋白流入,而DNA支架稳定脂质体以防止塌陷或破裂。
作为概念验证,我们将使用ALPS绘制单细胞内诱导的动态压力场
使用分区压力在3D矩阵内迁移;将结果与直接
通过0.5 μm微电极以有限的空间分辨率获得的测量,当前的最新技术水平。如果
如果成功,我们将产生一种前所未有的测量细胞内压力的新工具,
时空分辨率,这有望提供关于局部细胞内压力如何变化的见解
当细胞在3D地形中导航时,
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yun Chen其他文献
Yun Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yun Chen', 18)}}的其他基金
High-Throughput, Multiplexing-Ready Intracellular Pressure Probes
高通量、可多重使用的细胞内压力探针
- 批准号:
10705580 - 财政年份:2022
- 资助金额:
$ 26.88万 - 项目类别:
相似国自然基金
由actomyosin介导的集体性细胞迁移对唇腭裂发生的影响的研究
- 批准号:82360313
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
Nuclear force feedback as rheostat for actomyosin tension control
核力反馈作为肌动球蛋白张力控制的变阻器
- 批准号:
MR/Y001125/1 - 财政年份:2024
- 资助金额:
$ 26.88万 - 项目类别:
Research Grant
CAREER: Cytokinesis without an actomyosin ring and its coordination with organelle division
职业:没有肌动球蛋白环的细胞分裂及其与细胞器分裂的协调
- 批准号:
2337141 - 财政年份:2024
- 资助金额:
$ 26.88万 - 项目类别:
Continuing Grant
CAREER: Computational and Theoretical Investigation of Actomyosin Contraction Systems
职业:肌动球蛋白收缩系统的计算和理论研究
- 批准号:
2340865 - 财政年份:2024
- 资助金额:
$ 26.88万 - 项目类别:
Continuing Grant
Elucidation of the mechanism by which actomyosin emerges cell chirality
阐明肌动球蛋白出现细胞手性的机制
- 批准号:
23K14186 - 财政年份:2023
- 资助金额:
$ 26.88万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Deciphering actomyosin contractility regulation during incomplete germ cell division
破译不完全生殖细胞分裂过程中肌动球蛋白收缩性的调节
- 批准号:
573067-2022 - 财政年份:2022
- 资助金额:
$ 26.88万 - 项目类别:
University Undergraduate Student Research Awards
CAREER: Actuating robots with actomyosin active gels
职业:用肌动球蛋白活性凝胶驱动机器人
- 批准号:
2144380 - 财政年份:2022
- 资助金额:
$ 26.88万 - 项目类别:
Continuing Grant
Collaborative Research: Mechanics of Reconstituted Self-Organized Contractile Actomyosin Systems
合作研究:重建自组织收缩肌动球蛋白系统的力学
- 批准号:
2201236 - 财政年份:2022
- 资助金额:
$ 26.88万 - 项目类别:
Standard Grant
Collaborative Research: Mechanics of Reconstituted Self-Organized Contractile Actomyosin Systems
合作研究:重建自组织收缩肌动球蛋白系统的力学
- 批准号:
2201235 - 财政年份:2022
- 资助金额:
$ 26.88万 - 项目类别:
Standard Grant
Coordination of actomyosin and anillo-septin sub-networks of the contractile ring during cytokinesis
胞质分裂过程中收缩环肌动球蛋白和 anillo-septin 子网络的协调
- 批准号:
463633 - 财政年份:2022
- 资助金额:
$ 26.88万 - 项目类别:
Operating Grants
The integrin-dependent B cell actomyosin network drives immune synapse formation and B cell functions
整合素依赖性 B 细胞肌动球蛋白网络驱动免疫突触形成和 B 细胞功能
- 批准号:
546047-2020 - 财政年份:2021
- 资助金额:
$ 26.88万 - 项目类别:
Postdoctoral Fellowships














{{item.name}}会员




