Targeting invasive plasticity by inhibiting mitochondrial adaptations to matrix metalloproteinase loss
通过抑制线粒体对基质金属蛋白酶损失的适应来靶向侵入可塑性
基本信息
- 批准号:10430819
- 负责人:
- 金额:$ 22.58万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-16 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:4D ImagingActinsAddressAdenine Nucleotide TranslocaseAdoptedAnimalsAntsBasic ScienceBehaviorBiosensorBrainCaenorhabditis elegansCell LineCell SurvivalCellsChemicalsClinical ResearchClinical TrialsDataDevelopmental ProcessDistant MetastasisEventExcisionExperimental ModelsExtracellular MatrixExtracellular Matrix DegradationF-ActinFluorescenceGenesGeneticGlioblastomaGoalsHumanImmunologic SurveillanceIn VitroInvadedLocalized Malignant NeoplasmMalignant NeoplasmsMatrix MetalloproteinasesMetabolicMissionMitochondriaModelingNeoplasm MetastasisOutputOxidative StressPathway interactionsPharmacologic SubstancePorosityProductionProteinsProteolysisPublic HealthRNA InterferenceReporterResearchRoleSiteSliceTestingTherapeuticTimeTissuesTumor Cell InvasionTumor-DerivedUnited States National Institutes of HealthWorkbasebrain tissuecancer cellcancer invasivenesscancer therapyclinically relevantcombinatorialconfocal imagingefficacy testinggenetic analysisimprovedin vivoin vivo Modelinhibitorknock-downlive cell imagingmutantneoplastic celloverexpressionpatient prognosispolymerizationpreventprogramsresponsetissue culturetumortumor progression
项目摘要
Tumor cell invasion through extracellular matrix (ECM) facilitates localized and distant cancer spread,
which is the most lethal aspect of cancer. The ability of cells to switch between distinct invasive modes,
termed plasticity or adaptation, when faced with varying physical or chemical challenges underlies the
inability to develop anti-invasive therapies. Identifying targetable adaptive responses to halt invasion has
been hindered by the lack of experimental models to identify, characterize, and test the loss of key
molecules that facilitate plasticity. To address this critical need we have focused on matrix
metalloproteinases (MMPs), which have been targeted in extensive clinical trials because of their strong
association with cancer and role in degrading ECM. Anti-MMP therapies, however, have been ineffective,
likely because of invasive plasticity. To identify and understand how invasive cells adapt to MMP loss,
we are using the in vivo model of anchor cell (AC) invasion in C. elegans. We found that the genetic
removal of MMPs results in an adaptive invasion response where instead of ECM degradation, the AC
increases F-actin polymerization to forcefully penetrate ECM. Using MMP-null animals, we performed the
first synergistic invasion screen to pinpoint genes that promote adaptive AC invasion and identified the
mitochondrial ATP/ADP translocase, ant-1.1, as the strongest candidate. ANTs have multiple
mitochondrial functions (ATP/ADP exchange, mitophagy, mitochondrial dynamics) and the ANT-1.1
protein is highly enriched in AC mitochondria that polarize to the site of ECM invasion. ANT-1.1
knockdown in MMP-null animals prevents adaptive F-actin formation and inhibits AC invasion. The overall
objective of this application is to (Aim 1) elucidate how ant-1.1 promotes adaptive invasion after MMP
loss in C. elegans, and (Aim 2) determine if the concurrent loss of MMP and ANT activity in a 4-D
organotypic brain slice model of glioblastoma (GBM) blocks invasive activity. Our central hypothesis is
that understanding how ANT-1.1 functions in mitochondrial for adaptive invasion will facilitate targeting
ANTs along with MMPs in a clinically relevant brain slice model of GBM invasion. To understand how
ANT-1.1 promotes adaptive invasion, will use genetic analysis, fluorescence reporters, metabolic
biosensors, cell-specific metabolic analysis, and quantitative live-cell imaging. We will then use
quantitative confocal imaging to directly test the efficacy of combined ANT and MMP therapies on GBM
cell invasion. We expect to establish how ANT-1.1 functions within mitochondria to facilitate adaptive
invasion (possibly through multiple functions) and to develop combined therapeutic approaches to
effectively block GBM invasion. These contributions will be significant as they will reveal how invasive
cells adaptively invade in the absence of MMPs and establish a pipeline that can be used to identify and
characterize synergistic invasive targets resulting in more effective cancer therapies.
肿瘤细胞通过细胞外基质(ECM)的侵袭促进了局部和远处的癌症扩散,
这是癌症最致命的一面细胞在不同侵入模式之间切换的能力,
所谓的可塑性或适应性,当面临不同的物理或化学挑战时,
无法开发抗侵入性疗法。确定有针对性的适应性反应,以阻止入侵,
由于缺乏识别、表征和测试密钥丢失的实验模型而受到阻碍
促进可塑性的分子。为了满足这一关键需求,我们专注于矩阵
金属蛋白酶(MMPs),由于其强大的功能,已成为广泛临床试验的目标。
与癌症的关联以及在降解ECM中的作用。然而,抗MMP疗法是无效的,
很可能是因为侵入性可塑性。为了识别和理解侵袭性细胞如何适应MMP损失,
我们在C.优美的我们发现,
MMP的去除导致适应性侵入反应,其中AC不是ECM降解,而是AC降解。
增加F-肌动蛋白聚合以有力地穿透ECM。使用MMP-null动物,我们进行了
第一个协同入侵筛选,以查明促进适应性AC入侵的基因,并确定了
线粒体ATP/ADP转位酶ant-1.1是最强的候选者。蚂蚁有多个
线粒体功能(ATP/ADP交换,线粒体自噬,线粒体动力学)和ANT-1.1
蛋白质在AC线粒体中高度富集,AC线粒体靠近ECM侵入的位点。ANT-1.1
在MMP缺失动物中的敲低阻止适应性F-肌动蛋白形成并抑制AC侵入。整体
本申请的目的是(目的1)阐明ant-1.1如何促进MMP后的适应性侵袭
损失C。elegans,和(目的2)确定是否同时损失MMP和ANT活性的4-D
胶质母细胞瘤(GBM)的器官型脑切片模型阻断侵袭活性。我们的核心假设是
了解ANT-1.1在线粒体中的适应性入侵功能将有助于靶向
ANT沿着MMPs在GBM侵袭的临床相关脑切片模型中。了解如何
ANT-1.1促进适应性入侵,将使用遗传分析,荧光报告,代谢
生物传感器、细胞特异性代谢分析和定量活细胞成像。然后我们将使用
定量共聚焦成像,直接测试ANT和MMP联合治疗对GBM的疗效
细胞入侵我们希望确定ANT-1.1如何在线粒体内发挥作用,以促进适应性
侵袭(可能通过多种功能),并开发联合治疗方法,
有效阻止GBM入侵。这些贡献将是重要的,因为它们将揭示如何侵入
细胞在没有MMP的情况下适应性侵入,并建立一个管道,可用于识别和
表征协同侵入性靶点,导致更有效的癌症治疗。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Laura Catherine Kelley其他文献
Laura Catherine Kelley的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Laura Catherine Kelley', 18)}}的其他基金
Targeting invasive plasticity by inhibiting mitochondrial adaptations to matrix metalloproteinase loss
通过抑制线粒体对基质金属蛋白酶损失的适应来靶向侵入可塑性
- 批准号:
10684722 - 财政年份:2022
- 资助金额:
$ 22.58万 - 项目类别:
Understanding the Role of MMPs in Basement Membrane Breaching In vivo
了解 MMP 在体内基底膜破裂中的作用
- 批准号:
8554766 - 财政年份:2012
- 资助金额:
$ 22.58万 - 项目类别:
Understanding the Role of MMPs in Basement Membrane Breaching In vivo
了解 MMP 在体内基底膜破裂中的作用
- 批准号:
8398457 - 财政年份:2012
- 资助金额:
$ 22.58万 - 项目类别:
相似海外基金
A novel motility system driven by two classes of bacterial actins MreB
由两类细菌肌动蛋白 MreB 驱动的新型运动系统
- 批准号:
22KJ2613 - 财政年份:2023
- 资助金额:
$ 22.58万 - 项目类别:
Grant-in-Aid for JSPS Fellows
The structural basis of plasmid segregation by bacterial actins
细菌肌动蛋白分离质粒的结构基础
- 批准号:
342887 - 财政年份:2016
- 资助金额:
$ 22.58万 - 项目类别:
Operating Grants
The structural basis for plasmid segregation by bacterial actins
细菌肌动蛋白分离质粒的结构基础
- 批准号:
278338 - 财政年份:2013
- 资助金额:
$ 22.58万 - 项目类别:
Operating Grants
Cytoplasmic Actins in Maintenance of Muscle Mitochondria
细胞质肌动蛋白在维持肌肉线粒体中的作用
- 批准号:
8505938 - 财政年份:2012
- 资助金额:
$ 22.58万 - 项目类别:
Differential Expression of the Diverse Plant Actins
多种植物肌动蛋白的差异表达
- 批准号:
7931495 - 财政年份:2009
- 资助金额:
$ 22.58万 - 项目类别:
Studies on how actins and microtubules are coordinated and its relevancy.
研究肌动蛋白和微管如何协调及其相关性。
- 批准号:
19390048 - 财政年份:2007
- 资助金额:
$ 22.58万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Interaction of myosin with monomeric actins
肌球蛋白与单体肌动蛋白的相互作用
- 批准号:
5311554 - 财政年份:2001
- 资助金额:
$ 22.58万 - 项目类别:
Priority Programmes
STRUCTURE/INTERACTIONS OF ACTINS AND ACTIN-BINDING PROTEIN
肌动蛋白和肌动蛋白结合蛋白的结构/相互作用
- 批准号:
6316669 - 财政年份:2000
- 资助金额:
$ 22.58万 - 项目类别:














{{item.name}}会员




