Characterizing Bias and Care Disparities with Physical Restraint Use in the Emergency Setting Using Natural Language and Cognitive Data
使用自然语言和认知数据描述紧急情况下使用身体约束的偏见和护理差异
基本信息
- 批准号:10431043
- 负责人:
- 金额:$ 25.13万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-06-02 至 2024-02-28
- 项目状态:已结题
- 来源:
- 关键词:Accident and Emergency departmentAddressAffectAggressive behaviorAgitationAlgorithmsAreaArtificial IntelligenceAsphyxiaBehavioralBlack raceCaringCensusesCessation of lifeClinicalCoercionCognitiveComplementComputersCross-Sectional StudiesCuesDataData ElementDatabasesDecision MakingDisciplineDiscriminationElectronic Health RecordEmergency CareEmergency Department patientEmergency SituationEmergency department visitEnvironmentEventFocus GroupsHealth Disparities ResearchHealth PersonnelHealth Services ResearchHealth systemHealthcare SystemsHomelessnessHumanIndividualInformaticsInsuranceInterdisciplinary StudyInterpersonal RelationsInterviewInvestmentsLanguageLeadMapsMeasuresMediatingMediationMediator of activation proteinMethodsMinorityMinority GroupsModelingNatural Language ProcessingNursesPatient CarePatientsPhysical RestraintPhysiciansPopulationPopulation AnalysisPopulations at RiskPrevalenceProcessPsyche structureQualitative MethodsResearchResearch MethodologyRiskRisk FactorsSafetySecurityStructureSubstance Use DisorderSystemTechniquesTestingTextTherapeuticTimeTrainingTraumaTrustVentilatory DepressionViolenceVisitWorkanalytical methodbasebehavioral healthblack patientclinical decision-makingcognitive taskdeep learning modelemergency settingsexecutive functionexperiencehealth disparityheuristicshigh riskinnovationinterdisciplinary approachlow socioeconomic statusmarginalized populationminority health disparitynatural languagenovelpreventpublic health insurancerestraintsevere mental illnesssocial culturesocioeconomic disadvantagestructured datatask analysistherapy developmenttool
项目摘要
PROJECT SUMMARY
Agitation is defined as excessive psychomotor activity leading to aggressive and violent behavior in patients.
Those presenting with agitation in the emergency setting represent the most marginalized populations.
Coercive measures like physical restraints are currently used routinely on agitated individuals, but are
associated with physical trauma, respiratory depression, and death. Recent studies have shown
disproportionate use of physical restraint on Black patients, those who are homeless, and those with public or
no insurance. Identification of specific interpersonal and structural factors that affect heuristics and decision-
making of healthcare workers regarding restraint use is needed to mitigate systemic bias and discrimination
against these marginalized patients. However, current research is limited to analyzing structured quantitative
data elements, while narrative text better reflects sociocultural contexts, interpersonal interactions, and
clinician thought processes. Natural language processing is an informatics discipline that can parse free text
within clinical notes into quantifiable variables on a large scale that can be combined with mediation analysis to
uncover factors leading to disparities in restraint use. A complementary tool is cognitive task analysis, which
uses qualitative methods to understand how mediators of bias affect clinical decision-making at the bedside.
Our overall objective is to use the combination of these innovative analytical methods to overcome deficiencies
of standard health service research methods in identifying individual, interpersonal, institutional, and systems
factors leading to bias in physical restraint use. In Aim 1, we will use natural language processing and
mediation analysis on a large database of emergency department clinical narrative notes across our regional
healthcare system to extract and identify candidate variables that lead minority populations to increased risk of
physical restraint. This will allow us to verify and test potential factors within our newly derived conceptual
model of bias during restraint use that predict discriminatory practices. In Aim 2, we will use cognitive task
analyses through qualitative interviews and video-informed focus groups with emergency healthcare workers to
characterize drivers and cues that influence decision-making and heuristics against minority populations. This
will complement the results from Aim 1 by providing explanatory models for how interpersonal and structural
factors that lead to bias are manifested at the bedside.
This proposed work will make a positive contribution to minority and health disparities research in the
emergency setting by identifying specific interpersonal and structural factors mediating bias and discrimination
against minority and socioeconomically disadvantaged individuals with behavioral emergencies. Our study is
exploratory and novel as it combines innovative and multidisciplinary approaches from two complementary
scientific fields to address multiple system levels of influence within the healthcare system in an understudied
area for emergency care where significant harm is occurring for marginalized populations.
项目概要
激越被定义为导致患者出现攻击性和暴力行为的过度精神运动活动。
那些在紧急情况下情绪激动的人代表了最边缘化的人群。
目前,对易激动的个人通常使用身体约束等强制措施,但
与身体创伤、呼吸抑制和死亡有关。最近的研究表明
对黑人患者、无家可归者以及公共场所或公共场所的患者过度使用身体束缚
没有保险。识别影响启发式和决策的特定人际关系和结构因素
需要让医护人员了解约束的使用,以减轻系统性偏见和歧视
针对这些边缘化的患者。然而,目前的研究仅限于分析结构化定量
数据元素,而叙述文本更好地反映社会文化背景、人际互动和
临床医生的思维过程。自然语言处理是一门可以解析自由文本的信息学学科
在临床记录中转化为大规模的可量化变量,可以与中介分析相结合
揭示导致约束使用差异的因素。一个补充工具是认知任务分析,它
使用定性方法来了解偏倚调节因素如何影响床边的临床决策。
我们的总体目标是结合使用这些创新的分析方法来克服缺陷
识别个人、人际、机构和系统的标准卫生服务研究方法
导致身体约束使用偏差的因素。在目标 1 中,我们将使用自然语言处理
对我们地区的急诊科临床叙述笔记大型数据库进行中介分析
医疗保健系统提取和识别导致少数群体患病风险增加的候选变量
身体约束。这将使我们能够验证和测试新推导的概念中的潜在因素
预测歧视性做法的约束使用期间的偏见模型。在目标 2 中,我们将使用认知任务
通过定性访谈和视频焦点小组与紧急医护人员进行分析
描述影响少数群体决策和启发的驱动因素和线索。这
将通过提供关于人际和结构如何变化的解释模型来补充目标 1 的结果
导致偏差的因素在床边就显现出来。
这项拟议的工作将为少数民族和健康差异研究做出积极贡献
通过识别介导偏见和歧视的特定人际和结构因素来设置紧急情况
针对出现行为紧急情况的少数群体和社会经济弱势群体。我们的研究是
探索性和新颖性,因为它结合了两个互补的创新和多学科方法
科学领域,以在未充分研究的情况下解决医疗保健系统内的多个系统级别的影响
边缘人群遭受重大伤害的紧急护理区域。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ambrose H Wong其他文献
Ambrose H Wong的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ambrose H Wong', 18)}}的其他基金
Characterizing Bias and Care Disparities with Physical Restraint Use in the Emergency Setting Using Natural Language and Cognitive Data
使用自然语言和认知数据描述紧急情况下使用身体约束的偏见和护理差异
- 批准号:
10633167 - 财政年份:2022
- 资助金额:
$ 25.13万 - 项目类别:
Clinical Decision Support Tool to Assess Risk and Prevent Agitation Events
用于评估风险和预防躁动事件的临床决策支持工具
- 批准号:
10683499 - 财政年份:2021
- 资助金额:
$ 25.13万 - 项目类别:
Clinical Decision Support Tool to Assess Risk and Prevent Agitation Events
用于评估风险和预防躁动事件的临床决策支持工具
- 批准号:
10365272 - 财政年份:2021
- 资助金额:
$ 25.13万 - 项目类别:
Clinical Decision Support Tool to Assess Risk and Prevent Agitation Events
用于评估风险和预防躁动事件的临床决策支持工具
- 批准号:
10687170 - 财政年份:2021
- 资助金额:
$ 25.13万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 25.13万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 25.13万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 25.13万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 25.13万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 25.13万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 25.13万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 25.13万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 25.13万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 25.13万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 25.13万 - 项目类别:
Research Grant