Deep Learning Image Analysis Algorithms to Improve Oral Cancer Risk Assessment for Oral Potentially Malignant Disorders

深度学习图像分析算法可改善口腔潜在恶性疾病的口腔癌风险评估

基本信息

  • 批准号:
    10430122
  • 负责人:
  • 金额:
    $ 67.04万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-06-15 至 2023-04-30
  • 项目状态:
    已结题

项目摘要

Abstract Oral potentially malignant disorders (OPMD) are a group of mucosal diseases in the oral cavity with a risk of progressing to oral squamous cell carcinoma. Risk assessment is traditionally done through a combination of clinical and histologic evaluation. Leukoplakia is a common type of OPMD that is given a histologic grading score that is supposed to be related to its risk of progression. However, there is tremendous intra- and inter- observer heterogeneity in dysplasia grading, leading to variability and uncertainty in risk assessment and treatment planning. This also hinders the ability to study the biology of these lesions. We propose to use whole slide imaging on routine hematoxylin and eosin (H&E) stained sections in combination with deep learning methods to build a consistent risk scoring system for OPMD. Our methods will identify cell, nucleus, and tissue architectural features relevant to risk of progression in OPMD. These features will be tested in a large retrospective case-control study and then validated prospectively. We will also explore combining them with genomic and immune biomarkers in order to improve the prognostic power and explore the biolo gy of progression in OPMD. We hope that these efforts will improve and standardize risk assessment for OPMD. This could lead to improved treatment and prevention options by enabling risk stratification and allowing future clinical trials be conducted in a more uniform patient cohort. Similarly, it could improve our understanding for the biology of OPMD and the process of progression to cancer.
摘要

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Curtis Pickering其他文献

Curtis Pickering的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Curtis Pickering', 18)}}的其他基金

Deep Learning Image Analysis Algorithms to Improve Oral Cancer Risk Assessment for Oral Potentially Malignant Disorders
深度学习图像分析算法可改善口腔潜在恶性疾病的口腔癌风险评估
  • 批准号:
    10805177
  • 财政年份:
    2023
  • 资助金额:
    $ 67.04万
  • 项目类别:
Synthetic Lethal Targeting of CREBBP/EP300 in Head and Neck Squamous Cell Carcinoma
CREBBP/EP300 在头颈鳞状细胞癌中的合成致死靶向
  • 批准号:
    10804966
  • 财政年份:
    2023
  • 资助金额:
    $ 67.04万
  • 项目类别:
Deep Learning Image Analysis Algorithms to Improve Oral Cancer Risk Assessment for Oral Potentially Malignant Disorders
深度学习图像分析算法可改善口腔潜在恶性疾病的口腔癌风险评估
  • 批准号:
    10209773
  • 财政年份:
    2021
  • 资助金额:
    $ 67.04万
  • 项目类别:
Synthetic Lethal Targeting of CREBBP/EP300 in Head and Neck Squamous Cell Carcinoma
CREBBP/EP300 在头颈鳞状细胞癌中的合成致死靶向
  • 批准号:
    10380839
  • 财政年份:
    2019
  • 资助金额:
    $ 67.04万
  • 项目类别:
Synthetic Lethal Targeting of CREBBP/EP300 in Head and Neck Squamous Cell Carcinoma
CREBBP/EP300 在头颈鳞状细胞癌中的合成致死靶向
  • 批准号:
    9913499
  • 财政年份:
    2019
  • 资助金额:
    $ 67.04万
  • 项目类别:

相似海外基金

AI-based prediction of the belepharoptosis etiologies by means of machine learning algorithmic analysis of length-tensile force chart of levator muscle
通过提上睑肌长度-拉力图的机器学习算法分析,基于人工智能的上睑下垂病因预测
  • 批准号:
    22K09863
  • 财政年份:
    2022
  • 资助金额:
    $ 67.04万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Algorithmic analysis of symmetric-key cryptographic primitives
对称密钥密码原语的算法分析
  • 批准号:
    262074-2008
  • 财政年份:
    2013
  • 资助金额:
    $ 67.04万
  • 项目类别:
    Discovery Grants Program - Individual
Algorithmic analysis of symmetric-key cryptographic primitives
对称密钥密码原语的算法分析
  • 批准号:
    262074-2008
  • 财政年份:
    2012
  • 资助金额:
    $ 67.04万
  • 项目类别:
    Discovery Grants Program - Individual
Algorithmic analysis of symmetric-key cryptographic primitives
对称密钥密码原语的算法分析
  • 批准号:
    262074-2008
  • 财政年份:
    2011
  • 资助金额:
    $ 67.04万
  • 项目类别:
    Discovery Grants Program - Individual
Unified Approach for Nanotechnology CAD/Computation by Algorithmic Analysis of Periodic Crystal Structures
通过周期性晶体结构的算法分析实现纳米技术 CAD/计算的统一方法
  • 批准号:
    22650002
  • 财政年份:
    2010
  • 资助金额:
    $ 67.04万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Algorithmic analysis of symmetric-key cryptographic primitives
对称密钥密码原语的算法分析
  • 批准号:
    262074-2008
  • 财政年份:
    2010
  • 资助金额:
    $ 67.04万
  • 项目类别:
    Discovery Grants Program - Individual
Algorithmic analysis of symmetric-key cryptographic primitives
对称密钥密码原语的算法分析
  • 批准号:
    262074-2008
  • 财政年份:
    2009
  • 资助金额:
    $ 67.04万
  • 项目类别:
    Discovery Grants Program - Individual
Algorithmic analysis of symmetric-key cryptographic primitives
对称密钥密码原语的算法分析
  • 批准号:
    262074-2008
  • 财政年份:
    2008
  • 资助金额:
    $ 67.04万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical & Algorithmic Analysis of Natural and Artificial DNA Sequences
数学
  • 批准号:
    0218568
  • 财政年份:
    2002
  • 资助金额:
    $ 67.04万
  • 项目类别:
    Standard Grant
Algorithmic Analysis and Congestion Control of Connection-Oriented Services in Large Scale Communication Networks.
大规模通信网络中面向连接的服务的算法分析和拥塞控制。
  • 批准号:
    9404947
  • 财政年份:
    1994
  • 资助金额:
    $ 67.04万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了