Deep Learning Image Analysis Algorithms to Improve Oral Cancer Risk Assessment for Oral Potentially Malignant Disorders
深度学习图像分析算法可改善口腔潜在恶性疾病的口腔癌风险评估
基本信息
- 批准号:10805177
- 负责人:
- 金额:$ 68.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-05-01 至 2026-04-30
- 项目状态:未结题
- 来源:
- 关键词:AffectAlgorithmic AnalysisAlgorithmsArchitectureBiologicalBiological MarkersBiologyBiopsyCase/Control StudiesCell NucleusCellsCharacteristicsClassificationClinicalClinical DataClinical TrialsCollectionComputational algorithmComputer AnalysisComputing MethodologiesDataDevelopmentDiagnosisDiseaseDysplasiaEpithelial CellsEvaluationExclusionFutureGeneral PopulationGenomicsGoalsHematoxylin and Eosin Staining MethodHeterogeneityHistologicHistologyHistopathologic GradeImageImage AnalysisImmuneImmunologic MarkersIndividualIntraepithelial NeoplasiaLesionLeukoplakiaMachine LearningMalignant - descriptorMalignant NeoplasmsMeasurementMeasuresMethodsModelingMorphologyMucous MembraneOralOral LeukoplakiaOral cavityOral mucous membrane structurePathologicPathologyPatient CarePatient riskPatientsPerformancePersonsPreventionProceduresProcessProcess AssessmentPrognostic MarkerProtocols documentationRecording of previous eventsResearchRiskRisk AssessmentRisk MarkerSamplingSlideStainsStandardizationStatistical ModelsSystemTP53 geneTestingTherapeutic InterventionTissue SampleTissue imagingTissuesUncertaintyValidationcancer diagnosiscancer riskcell typeclinical careclinical riskcohortdata integrationdeep learningdisorder riskgenomic biomarkergenomic datahigh riskimaging biomarkerimprovedinnovationinsightlearning algorithmlearning strategymalignant mouth neoplasmmouth squamous cell carcinomamutational statusnoveloral plaquephenotypic datapredict clinical outcomepredictive modelingprognostic valueprogression riskprospectiverisk stratificationtreatment planningwhole slide imaging
项目摘要
Abstract
Oral potentially malignant disorders (OPMD) are a group of mucosal diseases in the oral cavity with a risk of
progressing to oral squamous cell carcinoma. Risk assessment is traditionally done through a combination of
clinical and histologic evaluation. Leukoplakia is a common type of OPMD that is given a histologic grading
score that is supposed to be related to its risk of progression. However, there is tremendous intra- and inter-
observer heterogeneity in dysplasia grading, leading to variability and uncertainty in risk assessment and
treatment planning. This also hinders the ability to study the biology of these lesions. We propose to use whole
slide imaging on routine hematoxylin and eosin (H&E) stained sections in combination with deep learning
methods to build a consistent risk scoring system for OPMD. Our methods will identify cell, nucleus, and tissue
architectural features relevant to risk of progression in OPMD. These features will be tested in a large
retrospective case-control study and then validated prospectively. We will also explore combining them with
genomic and immune biomarkers in order to improve the prognostic power and explore the biolo gy of
progression in OPMD. We hope that these efforts will improve and standardize risk assessment for OPMD.
This could lead to improved treatment and prevention options by enabling risk stratification and allowing future
clinical trials be conducted in a more uniform patient cohort. Similarly, it could improve our understanding for
the biology of OPMD and the process of progression to cancer.
摘要
口腔潜在恶性疾病(OPMD)是一组口腔粘膜疾病,
发展成口腔鳞状细胞癌传统上,风险评估是通过以下几个方面的结合来完成的:
临床和组织学评价。白斑病是一种常见的OPMD类型,
评分应该与其进展风险相关。然而,有巨大的内部和内部-
观察者异型增生分级的异质性,导致风险评估的可变性和不确定性,
治疗计划这也阻碍了研究这些病变的生物学的能力。我们建议使用整体
常规苏木精和伊红(H&E)染色切片上的载玻片成像结合深度学习
建立OPMD一致的风险评分系统的方法。我们的方法可以识别细胞核和组织
与OPMD进展风险相关的架构特征。这些功能将在大型
回顾性病例对照研究,然后进行前瞻性验证。我们还将探索将它们与
基因组和免疫生物标志物,以提高预后能力,并探索生物戈伊,
OPMD的进展。我们希望,这些努力将改善OPMD的风险评估并使之标准化。
这可能会导致改善治疗和预防方案,使风险分层,并允许未来
临床试验将在更统一的患者队列中进行。同样,它可以提高我们对
OPMD的生物学和发展为癌症的过程。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Artificial intelligence in mental healthcare: an overview and future perspectives.
精神卫生保健中的人工智能:概述和未来展望。
- DOI:10.1259/bjr.20230213
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Jin,KevinW;Li,Qiwei;Xie,Yang;Xiao,Guanghua
- 通讯作者:Xiao,Guanghua
ScopeViewer: A Browser-Based Solution for Visualizing Spatial Transcriptomics Data.
ScopeViewer:基于浏览器的空间转录组数据可视化解决方案。
- DOI:10.1101/2023.07.24.549256
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Luo,Danni;Robertson,Sophie;Zhan,Yuanchun;Rong,Ruichen;Wang,Shidan;Jiang,Xi;Yang,Sen;Palmer,Suzette;Jia,Liwei;Li,Qiwei;Xiao,Guanghua;Zhan,Xiaowei
- 通讯作者:Zhan,Xiaowei
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Curtis Pickering其他文献
Curtis Pickering的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Curtis Pickering', 18)}}的其他基金
Synthetic Lethal Targeting of CREBBP/EP300 in Head and Neck Squamous Cell Carcinoma
CREBBP/EP300 在头颈鳞状细胞癌中的合成致死靶向
- 批准号:
10804966 - 财政年份:2023
- 资助金额:
$ 68.4万 - 项目类别:
Deep Learning Image Analysis Algorithms to Improve Oral Cancer Risk Assessment for Oral Potentially Malignant Disorders
深度学习图像分析算法可改善口腔潜在恶性疾病的口腔癌风险评估
- 批准号:
10430122 - 财政年份:2021
- 资助金额:
$ 68.4万 - 项目类别:
Deep Learning Image Analysis Algorithms to Improve Oral Cancer Risk Assessment for Oral Potentially Malignant Disorders
深度学习图像分析算法可改善口腔潜在恶性疾病的口腔癌风险评估
- 批准号:
10209773 - 财政年份:2021
- 资助金额:
$ 68.4万 - 项目类别:
Synthetic Lethal Targeting of CREBBP/EP300 in Head and Neck Squamous Cell Carcinoma
CREBBP/EP300 在头颈鳞状细胞癌中的合成致死靶向
- 批准号:
10380839 - 财政年份:2019
- 资助金额:
$ 68.4万 - 项目类别:
Synthetic Lethal Targeting of CREBBP/EP300 in Head and Neck Squamous Cell Carcinoma
CREBBP/EP300 在头颈鳞状细胞癌中的合成致死靶向
- 批准号:
9913499 - 财政年份:2019
- 资助金额:
$ 68.4万 - 项目类别:
相似海外基金
AI-based prediction of the belepharoptosis etiologies by means of machine learning algorithmic analysis of length-tensile force chart of levator muscle
通过提上睑肌长度-拉力图的机器学习算法分析,基于人工智能的上睑下垂病因预测
- 批准号:
22K09863 - 财政年份:2022
- 资助金额:
$ 68.4万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Algorithmic analysis of symmetric-key cryptographic primitives
对称密钥密码原语的算法分析
- 批准号:
262074-2008 - 财政年份:2013
- 资助金额:
$ 68.4万 - 项目类别:
Discovery Grants Program - Individual
Algorithmic analysis of symmetric-key cryptographic primitives
对称密钥密码原语的算法分析
- 批准号:
262074-2008 - 财政年份:2012
- 资助金额:
$ 68.4万 - 项目类别:
Discovery Grants Program - Individual
Algorithmic analysis of symmetric-key cryptographic primitives
对称密钥密码原语的算法分析
- 批准号:
262074-2008 - 财政年份:2011
- 资助金额:
$ 68.4万 - 项目类别:
Discovery Grants Program - Individual
Unified Approach for Nanotechnology CAD/Computation by Algorithmic Analysis of Periodic Crystal Structures
通过周期性晶体结构的算法分析实现纳米技术 CAD/计算的统一方法
- 批准号:
22650002 - 财政年份:2010
- 资助金额:
$ 68.4万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Algorithmic analysis of symmetric-key cryptographic primitives
对称密钥密码原语的算法分析
- 批准号:
262074-2008 - 财政年份:2010
- 资助金额:
$ 68.4万 - 项目类别:
Discovery Grants Program - Individual
Algorithmic analysis of symmetric-key cryptographic primitives
对称密钥密码原语的算法分析
- 批准号:
262074-2008 - 财政年份:2009
- 资助金额:
$ 68.4万 - 项目类别:
Discovery Grants Program - Individual
Algorithmic analysis of symmetric-key cryptographic primitives
对称密钥密码原语的算法分析
- 批准号:
262074-2008 - 财政年份:2008
- 资助金额:
$ 68.4万 - 项目类别:
Discovery Grants Program - Individual
Mathematical & Algorithmic Analysis of Natural and Artificial DNA Sequences
数学
- 批准号:
0218568 - 财政年份:2002
- 资助金额:
$ 68.4万 - 项目类别:
Standard Grant
Algorithmic Analysis and Congestion Control of Connection-Oriented Services in Large Scale Communication Networks.
大规模通信网络中面向连接的服务的算法分析和拥塞控制。
- 批准号:
9404947 - 财政年份:1994
- 资助金额:
$ 68.4万 - 项目类别:
Standard Grant