Hatching Organoids for Continuous Tissue Production Pipelines

用于连续组织生产管道的孵化类器官

基本信息

  • 批准号:
    10433762
  • 负责人:
  • 金额:
    $ 31.48万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-08-01 至 2024-05-31
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY Our evolving ability to bioprint cells to generate complex tissues and organs promises to revolutionize medicine by overcoming donor organ shortages and immune rejection. However, a major limiting factor faced by the bioprinting field is the complexity and cost in generating the billions to trillions of differentiated cells from induced pluripotent stem cells (iPSCs) to yield the necessary quantities of patient-specific cells for organ-scale bioprinting. We posit that organoids, owing to their mature cellular makeup, microarchitecture, and function, could serve as ideal building blocks for bioprinting organ-scale tissues. However, typical organoid protocols generate only 10-1,000 organoids, and their therapeutic potential is limited by batch-to-batch variability. While we have previously demonstrated that organoids can be rendered into printable and densely cellular bio-inks, organ scale bioprinting would require the synthesis of over ~1 million organoids. An optimal process for generating millions of organoids for bio-inks would A) be driven by cell-intrinsic mechanisms not requiring expensive exogenous growth and differentiation factors, B) would allow the temporal and spatial co- differentiation of stem cells to the different fates that normally cooperate in vivo resulting in organoids more likely to have the requisite functions to serve as optimal bio-inks and C) would be a continuous (i.e. batch-free) differentiation process with no down-time or batch-to-batch variability, wherein new cells are continuously added and mature organoids would be continuously extracted. To address the issue of media cost and co- differentiation, our preliminary work has yielded transcription factor overexpression for driving coordinate differentiation to divergent cell types in a growth factor-free fashion to yield mixed cell type organoids for bioprinting. To apply this process at the million-organoid scale, we propose here to develop an ‘organoid farm’, the first continuous organoid derivation process to generate millions of organoids in a continuous culture bioreactor system. Differentially fate-specific programmed iPSCs will be inserted into alginate capsules, continuously introduced into the culture, and developed to mature organoids. The input iPSCs will be programmed to spontaneously ‘hatch’ upon maturation via maturation stage-dependent expression of alginate lyase, a benign alginate-degrading enzyme, thus liberating the mature organoid in a form that is easily harvested from the ongoing culture. While the proof-of-concept experiments proposed herein utilizes mixtures of iPSCs programmed towards the endothelial and fibroblast fates that comprise the vascular tissue, this approach should be applicable to the generation of any organoid type for bioprinting virtually any tissue or organ. Further downstream applications of our organoid farm and hatching organoid techniques include automated organoid purification and pooled genetic or pharmacological screening.
项目摘要 我们不断发展的生物打印细胞以生成复杂组织和器官的能力有望彻底改变医学 克服捐赠器官短缺和免疫排斥。然而,一个主要的限制因素所面临的 生物打印领域的最大挑战是从诱导的细胞中产生数十亿至数万亿分化细胞的复杂性和成本。 多能干细胞(iPSC),以产生用于器官规模移植的必要数量的患者特异性细胞。 生物打印我们认为,类器官,由于其成熟的细胞组成,微结构和功能, 可以作为生物打印器官规模组织的理想构建块。然而,典型的类器官方案 仅产生10- 1,000个类器官,并且它们的治疗潜力受到批次间差异的限制。而 我们先前已经证明类器官可以被制成可印刷的和密集的细胞生物墨水, 器官规模的生物打印将需要合成超过100万个类器官。一种最佳工艺, 产生数百万个用于生物墨水的类器官将A)由细胞内在机制驱动, 昂贵的外源生长和分化因子,B)将允许时间和空间的协同作用, 干细胞分化为不同的命运,这些命运通常在体内合作,更可能导致类器官 具有用作最佳生物油墨的必要功能,并且C)将是连续的(即无批次的) 没有停机时间或批次间变异性的分化过程,其中连续添加新细胞 并且成熟的类器官将被连续提取。为了解决媒体成本和合作问题, 分化,我们的初步工作已经产生了驱动坐标的转录因子过表达 以无生长因子的方式分化为不同的细胞类型,以产生混合细胞类型的类器官, 生物打印为了将这一过程应用于百万个类器官规模,我们在这里建议开发一个“类器官农场”, 第一个连续的类器官衍生过程,在连续培养中产生数百万个类器官 生物反应器系统不同命运特异性编程的iPSC将被插入藻酸盐胶囊中, 连续引入培养物中,并发育成成熟的类器官。输入的iPSC将是 通过藻酸盐的成熟阶段依赖性表达, 裂解酶,一种良性的藻酸盐降解酶,从而以容易收获的形式释放成熟的类器官 来自正在进行的文化。虽然本文提出的概念验证实验利用iPSC的混合物, 对于包括血管组织在内的内皮细胞和成纤维细胞的命运,这种方法应该 可应用于产生用于生物打印几乎任何组织或器官的任何类器官类型。进一步 我们的类器官农场和孵化类器官技术的下游应用包括自动化类器官 纯化和合并的遗传或药理学筛选。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mark A. Skylar-Scott其他文献

Mark A. Skylar-Scott的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mark A. Skylar-Scott', 18)}}的其他基金

Trillion cell culture to fuel organ biofabrication
万亿细胞培养为器官生物制造提供燃料
  • 批准号:
    10473259
  • 财政年份:
    2022
  • 资助金额:
    $ 31.48万
  • 项目类别:
Hatching Organoids for Continuous Tissue Production Pipelines
用于连续组织生产管道的孵化类器官
  • 批准号:
    10667497
  • 财政年份:
    2022
  • 资助金额:
    $ 31.48万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 31.48万
  • 项目类别:
    Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 31.48万
  • 项目类别:
    Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 31.48万
  • 项目类别:
    Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 31.48万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 31.48万
  • 项目类别:
    Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 31.48万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 31.48万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 31.48万
  • 项目类别:
    EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 31.48万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 31.48万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了