High Throughput Methods for Single Cell Proteomics

单细胞蛋白质组学的高通量方法

基本信息

  • 批准号:
    10433158
  • 负责人:
  • 金额:
    $ 26.63万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-05-01 至 2024-04-30
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY/ ABSTRACT To understand deviations in normal function of neurons and neuronal circuits brought on by disease, we will develop methods using patch clamping to measure the electrophysiology of individual neurons and then use mass spectrometry-based proteomics to measure the proteome. Now that neurons can be created from the skin cells of patients harboring disease genes to determine genotype to phenotype relationships between the genetic defects and electrophysiology, the methods we develop have great potential to significantly improve our ability to study human diseases of the brain. “Brain” organoids are also being created from skin cells to recapitulate a 3-dimensional environment for neurons and to include excitatory and inhibitory neurons. The ability to concurrently measure electrophysiology and protein expression will allow a determination of how disease related perturbations to neurons and other cells are related to molecular phenotypes. Single cell RNA-SEQ is used to measure gene expression in neurons, but gene expression profiles fail to account for rates of protein synthesis, degradation, proteostasis, post translational modification and enzymatic activity, all of which are critical cellular functions accomplished by proteins. Single cell mass spectrometry has been applied to neurons to measure metabolites and neuropeptides, but efforts to measure the proteome have lagged. We have established that proteins can be measured in neurons after electrophysiology, but here we propose to greatly increase the scale of measurements as well as the throughput. These methods will be broadly applicable as patch clamping techniques is a widely used technique to measure ionic currents in a variety of cell types including neurons, cardiomyocytes, muscle fibers and pancreatic beta cells. Furthermore, these methods will enable experiments to determine the mechanism of action of drugs that restore normal electrophysiology to neurons
项目摘要/摘要 为了了解疾病引起的神经元和神经回路正常功能的偏差,我们 将开发使用膜片钳来测量单个神经元的电生理学的方法, 然后使用基于质谱的蛋白质组学来测量蛋白质组。既然神经元可以 从携带疾病基因的患者的皮肤细胞中产生,以确定基因型与表型 遗传缺陷和电生理学之间的关系,我们开发的方法有很大的 有可能大大提高我们研究人类大脑疾病的能力。“大脑”类器官是 也是由皮肤细胞产生的,以重现神经元的三维环境, 兴奋和抑制神经元。同时测量电生理和蛋白质的能力 表达将允许确定神经元和其它细胞的疾病相关扰动如何被 与分子表型有关。单细胞RNA-SEQ用于测量神经元中的基因表达, 但基因表达谱不能解释蛋白质合成、降解、蛋白质稳态、后 翻译修饰和酶活性,所有这些都是完成的关键细胞功能 通过蛋白质。单细胞质谱法已经应用于神经元以测量代谢物, 神经肽,但测量蛋白质组的努力已经滞后。我们已经确定蛋白质可以 在电生理学之后在神经元中测量,但是在这里,我们建议大大增加 测量以及吞吐量。这些方法将广泛适用于膜片钳 技术是一种广泛用于测量多种细胞类型中离子电流的技术, 神经元、心肌细胞、肌纤维和胰腺β细胞。此外,这些方法将 使实验能够确定恢复正常电生理学的药物的作用机制 对神经元

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

John R Yates III其他文献

John R Yates III的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('John R Yates III', 18)}}的其他基金

The CFTR Interactome
CFTR 相互作用组
  • 批准号:
    10677830
  • 财政年份:
    2022
  • 资助金额:
    $ 26.63万
  • 项目类别:
High Throughput Methods for Single Cell Proteomics
单细胞蛋白质组学的高通量方法
  • 批准号:
    10609071
  • 财政年份:
    2022
  • 资助金额:
    $ 26.63万
  • 项目类别:
Analysis of protein interactions in neurodegenerative disease
神经退行性疾病中蛋白质相互作用的分析
  • 批准号:
    10613978
  • 财政年份:
    2022
  • 资助金额:
    $ 26.63万
  • 项目类别:
The CFTR Interactome
CFTR 相互作用组
  • 批准号:
    10504288
  • 财政年份:
    2022
  • 资助金额:
    $ 26.63万
  • 项目类别:
Measurement of Aberrant Protein Folds in Malignant Cells with Proteomics and Mass Spectrometry
用蛋白质组学和质谱法测量恶性肿瘤细胞中的异常蛋白质折叠
  • 批准号:
    9233438
  • 财政年份:
    2017
  • 资助金额:
    $ 26.63万
  • 项目类别:
The CFTR Interactome
CFTR 相互作用组
  • 批准号:
    9175991
  • 财政年份:
    2016
  • 资助金额:
    $ 26.63万
  • 项目类别:
Pulse-Chase Labeling with 15N and AHA in an Alzheimer's Mouse Model
在阿尔茨海默病小鼠模型中使用 15N 和 AHA 进行脉冲追踪标记
  • 批准号:
    9107688
  • 财政年份:
    2015
  • 资助金额:
    $ 26.63万
  • 项目类别:
Genomics
基因组学
  • 批准号:
    8896392
  • 财政年份:
    2015
  • 资助金额:
    $ 26.63万
  • 项目类别:
Pulse-Chase Labeling with 15N and AHA in an Alzheimer's Mouse Model
在阿尔茨海默病小鼠模型中使用 15N 和 AHA 进行脉冲追踪标记
  • 批准号:
    8919211
  • 财政年份:
    2014
  • 资助金额:
    $ 26.63万
  • 项目类别:
Pulse-Chase Labeling with 15N and AHA in an Alzheimer's Mouse Model
在阿尔茨海默病小鼠模型中使用 15N 和 AHA 进行脉冲追踪标记
  • 批准号:
    8749039
  • 财政年份:
    2014
  • 资助金额:
    $ 26.63万
  • 项目类别:

相似海外基金

Kilohertz volumetric imaging of neuronal action potentials in awake behaving mice
清醒行为小鼠神经元动作电位的千赫兹体积成像
  • 批准号:
    10515267
  • 财政年份:
    2022
  • 资助金额:
    $ 26.63万
  • 项目类别:
Signal processing in horizontal cells of the mammalian retina – coding of visual information by calcium and sodium action potentials
哺乳动物视网膜水平细胞的信号处理 â 通过钙和钠动作电位编码视觉信息
  • 批准号:
    422915148
  • 财政年份:
    2019
  • 资助金额:
    $ 26.63万
  • 项目类别:
    Research Grants
CAREER: Resolving action potentials and high-density neural signals from the surface of the brain
职业:解析来自大脑表面的动作电位和高密度神经信号
  • 批准号:
    1752274
  • 财政年份:
    2018
  • 资助金额:
    $ 26.63万
  • 项目类别:
    Continuing Grant
Development of Nanosheet-Based Wireless Probes for Multi-Simultaneous Monitoring of Action Potentials and Neurotransmitters
开发基于纳米片的无线探针,用于同时监测动作电位和神经递质
  • 批准号:
    18H03539
  • 财政年份:
    2018
  • 资助金额:
    $ 26.63万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Population Imaging of Action Potentials by Novel Two-Photon Microscopes and Genetically Encoded Voltage Indicators
通过新型双光子显微镜和基因编码电压指示器对动作电位进行群体成像
  • 批准号:
    9588470
  • 财政年份:
    2018
  • 资助金额:
    $ 26.63万
  • 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
  • 批准号:
    10009724
  • 财政年份:
    2018
  • 资助金额:
    $ 26.63万
  • 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
  • 批准号:
    10467225
  • 财政年份:
    2018
  • 资助金额:
    $ 26.63万
  • 项目类别:
Fast high-resolution deep photoacoustic tomography of action potentials in brains
大脑动作电位的快速高分辨率深度光声断层扫描
  • 批准号:
    9423398
  • 财政年份:
    2017
  • 资助金额:
    $ 26.63万
  • 项目类别:
NeuroGrid: a scalable system for large-scale recording of action potentials from the brain surface
NeuroGrid:用于大规模记录大脑表面动作电位的可扩展系统
  • 批准号:
    9357409
  • 财政年份:
    2016
  • 资助金额:
    $ 26.63万
  • 项目类别:
Noval regulatory mechanisms of axonal action potentials
轴突动作电位的新调节机制
  • 批准号:
    16K07006
  • 财政年份:
    2016
  • 资助金额:
    $ 26.63万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了