Defining molecular and gene-regulatory dysregulation in Down Syndrome tissues and models
定义唐氏综合症组织和模型中的分子和基因调节失调
基本信息
- 批准号:10433667
- 负责人:
- 金额:$ 19.44万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-03-10 至 2024-02-28
- 项目状态:已结题
- 来源:
- 关键词:AffectAgeArchitectureAtlasesAutomobile DrivingAutopsyBiologicalBrainCell LineCell NucleusCellsChromatinChromatin StructureChromosome 21Cluster AnalysisCognitive deficitsCollectionDataData SetDevelopmentDiseaseDisease ProgressionDisease modelDistalDown SyndromeEmbryoEnhancersEpigenetic ProcessEtiologyExperimental ModelsFoundationsFutureGene DosageGene ExpressionGene Expression ProfileGene Expression RegulationGene MutationGenesGenomicsGoalsHumanImpairmentIn VitroIndividualJointsKnowledgeLGALS3BP geneLanguageLanguage DevelopmentLeadLearningMapsMemoryMethylationMethyltransferaseModelingMolecularMolecular ProfilingMorphogenesisMorphologyNeocortexNeurodevelopmental DisorderNeurogliaNeuronsNewborn InfantPathogenesisPathologyPathway interactionsPatientsPregnancyProcessProteinsPublishingRegulator GenesRegulatory ElementReportingResearchResolutionRoleSamplingSmall Nuclear RNATechnologyTestingTherapeuticTimeTimeLineTissue ModelTissue-Specific Gene ExpressionTissuesarmbasebrain cellbrain tissuecell fate specificationcell typeepigenomeepigenomicsexperimental studygene regulatory networkhuman modelin vitro Modelin vivomRNA Differential Displaysmultiple omicsnerve stem cellneurodevelopmentneurogenesisneuropathologynovelprogenitorsexstem cell biologystem cell modelstem cellssynaptogenesistherapy developmenttranscription factortranscriptometranscriptome sequencingtreatment strategy
项目摘要
PROJECT ABSTRACT
Down syndrome (DS) is a neurodevelopmental disorder causing cognitive deficits including impaired learning
and memory, and language development, affecting 1 in 750 newborns. DS is caused by triplication of
chromosome 21 (T21), leading to altered gene dosage, and to changes in the proportion of brain cell types, and
in neuronal morphology and maturation, suggesting a neurodevelopmental etiology. However, the underlying
molecular mechanisms causing the observed neuropathology and functional deficits are still largely unknown.
Progress has been hindered by the overall complexity of brain architecture, an incomplete knowledge of the cell
types and molecular pathways dysregulated in DS during development, and limited human-relevant experimental
models. Moreover, bulk transcriptome and epigenome profiling indicates that T21 not only alters gene dosage
within the locus, but also leads to broad changes in gene expression and may lead to altered gene regulatory
dynamics. Based on these data, we hypothesize that increased chr21 gene dosage alters global gene expression
in neural progenitors, changing neural cell fate specification and differentiation. Here, we leverage novel genomic
technologies including joint single-nucleus transcriptome (snRNAseq), single-nucleus chromatin accessibility
(snATACseq) profiling, and single-cell joint chromatin interaction and methylation profiling (sc-m3C-seq), as well
as primary human neural progenitors (phNPCs), a validated model of human corticogenesis, to test this
hypothesis. We will first define cell-specific molecular and gene-regulatory dysregulation in DS by performing
joint snRNAseq, snATACseq and sc-m3C-seq in a collection of control and DS developing neocortex, at a time
period of peak neurogenesis. This comprehensive multi-omic profiling will uncover changes in cell composition
and cell-specific gene expression signatures in DS neocortex as well as reveal perturbations in cellular lineage
maps and specification. By integrating single-cell expression and epigenetic profiles we will define the proximal
and distal gene regulatory elements, as well as the transcription factors driving DS disease mechanisms. Finally,
we will leverage a unique collection of DS patient-derived and control phNPC lines to model disease in vitro in
order to characterize neural progenitor proliferation and specification in DS, as well as changes in neuronal
morphogenesis and synaptogenesis. We perform joint snRNAseq and snATACseq over a differentiation timeline
that recapitulates embryonic to mid-gestation corticogenesis in order to interrogate cellular, molecular and gene
regulatory dysregulation in DS and directly compare this model with in vivo DS mechanisms. Altogether, we
present a comprehensive project providing an in-depth cell biological and molecular characterization of DS
progression using in vivo tissues and a human-relevant model, and establishes this model for future mechanistic
interrogation. The long-term goal of this research is to provide the foundational molecular knowledge that will
ultimately contribute to the development of treatments for DS.
项目摘要
唐氏综合征(DS)是一种神经发育障碍,导致认知缺陷,包括学习障碍
记忆力和语言发展,影响750个新生儿中的1个。DS是由三倍的
21号染色体(T21),导致基因剂量改变,并改变脑细胞类型的比例,
在神经元形态和成熟,提示神经发育病因。但是,底层
引起所观察到的神经病理学和功能缺陷的分子机制在很大程度上仍然是未知的。
由于大脑结构的整体复杂性,以及对细胞的不完全了解,
发育过程中DS的类型和分子途径失调,以及有限的人类相关实验
模型此外,大量转录组和表观基因组分析表明,T21不仅改变基因剂量,
在基因座内,但也导致基因表达的广泛变化,并可能导致基因调控的改变,
动力学基于这些数据,我们假设chr 21基因剂量的增加改变了整体基因表达。
在神经祖细胞中,改变神经细胞的命运规范和分化。在这里,我们利用新的基因组
包括联合单核转录组(snRNAseq)、单核染色质可及性
(snATACseq)分析,以及单细胞联合染色质相互作用和甲基化分析(sc-m3 C-seq),
作为原代人神经祖细胞(phNPC),一种经验证的人皮质生成模型,
假说.我们将首先定义DS中的细胞特异性分子和基因调控失调,
联合snRNAseq、snATACseq和sc-m3 C-seq在对照和DS发育中的新皮层的集合中,
神经发生高峰期这种全面的多组学分析将揭示细胞组成的变化
和细胞特异性基因表达的签名在DS新皮层,以及揭示扰动细胞谱系
地图和规格。通过整合单细胞表达和表观遗传概况,我们将定义近端的
和远端基因调控元件,以及驱动DS疾病机制的转录因子。最后,
我们将利用DS患者来源的和对照phNPC细胞系的独特集合在体外模拟疾病,
为了表征DS中神经祖细胞的增殖和特化,以及神经元的变化,
形态发生和突触发生。我们在分化时间轴上执行联合snRNAseq和snATACseq
它概括了胚胎期到妊娠中期的皮质生成,以询问细胞、分子和基因
DS的调节失调,并直接比较该模型与体内DS机制。委员会共
提出一个全面的项目,提供深入的细胞生物学和分子表征的DS
使用体内组织和人类相关模型的进展,并建立该模型用于未来的机制
审讯这项研究的长期目标是提供基础分子知识,
最终有助于DS治疗的发展。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Luis de la Torre-Ubieta其他文献
Luis de la Torre-Ubieta的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Luis de la Torre-Ubieta', 18)}}的其他基金
Defining molecular and gene-regulatory dysregulation in Down Syndrome tissues and models
定义唐氏综合症组织和模型中的分子和基因调节失调
- 批准号:
10588168 - 财政年份:2022
- 资助金额:
$ 19.44万 - 项目类别:
Defining gene regulatory networks driving cortical evolution and brain development
定义驱动皮质进化和大脑发育的基因调控网络
- 批准号:
10616776 - 财政年份:2021
- 资助金额:
$ 19.44万 - 项目类别:
Defining gene regulatory networks driving cortical evolution and brain development
定义驱动皮质进化和大脑发育的基因调控网络
- 批准号:
10440238 - 财政年份:2021
- 资助金额:
$ 19.44万 - 项目类别:
Defining gene regulatory networks driving cortical evolution and brain development
定义驱动皮质进化和大脑发育的基因调控网络
- 批准号:
10039955 - 财政年份:2021
- 资助金额:
$ 19.44万 - 项目类别:
相似国自然基金
靶向递送一氧化碳调控AGE-RAGE级联反应促进糖尿病创面愈合研究
- 批准号:JCZRQN202500010
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
对香豆酸抑制AGE-RAGE-Ang-1通路改善海马血管生成障碍发挥抗阿尔兹海默病作用
- 批准号:2025JJ70209
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
AGE-RAGE通路调控慢性胰腺炎纤维化进程的作用及分子机制
- 批准号:
- 批准年份:2024
- 资助金额:0 万元
- 项目类别:面上项目
甜茶抑制AGE-RAGE通路增强突触可塑性改善小鼠抑郁样行为
- 批准号:2023JJ50274
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
蒙药额尔敦-乌日勒基础方调控AGE-RAGE信号通路改善术后认知功能障碍研究
- 批准号:
- 批准年份:2022
- 资助金额:33 万元
- 项目类别:地区科学基金项目
补肾健脾祛瘀方调控AGE/RAGE信号通路在再生障碍性贫血骨髓间充质干细胞功能受损的作用与机制研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
LncRNA GAS5在2型糖尿病动脉粥样硬化中对AGE-RAGE 信号通路上相关基因的调控作用及机制研究
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
围绕GLP1-Arginine-AGE/RAGE轴构建探针组学方法探索大柴胡汤异病同治的效应机制
- 批准号:81973577
- 批准年份:2019
- 资助金额:55.0 万元
- 项目类别:面上项目
AGE/RAGE通路microRNA编码基因多态性与2型糖尿病并发冠心病的关联研究
- 批准号:81602908
- 批准年份:2016
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
高血糖激活滑膜AGE-RAGE-PKC轴致骨关节炎易感的机制研究
- 批准号:81501928
- 批准年份:2015
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Deconstructing and Modeling the Single Cell Architecture of the Age-Related Macular Degeneration Retina and RPE/Choroid
年龄相关性黄斑变性视网膜和 RPE/脉络膜的单细胞结构的解构和建模
- 批准号:
10450171 - 财政年份:2020
- 资助金额:
$ 19.44万 - 项目类别:
Deconstructing and Modeling the Single Cell Architecture of the Age-Related Macular Degeneration Retina and RPE/Choroid
年龄相关性黄斑变性视网膜和 RPE/脉络膜的单细胞结构的解构和建模
- 批准号:
10674702 - 财政年份:2020
- 资助金额:
$ 19.44万 - 项目类别:
Deconstructing and Modeling the Single Cell Architecture of the Age-Related Macular Degeneration Retina and RPE/Choroid
年龄相关性黄斑变性视网膜和 RPE/脉络膜的单细胞结构的解构和建模
- 批准号:
10242936 - 财政年份:2020
- 资助金额:
$ 19.44万 - 项目类别:
Deconstructing and Modeling the Single Cell Architecture of the Age-Related Macular Degeneration Retina and RPE/Choroid
年龄相关性黄斑变性视网膜和 RPE/脉络膜的单细胞结构的解构和建模
- 批准号:
10058444 - 财政年份:2020
- 资助金额:
$ 19.44万 - 项目类别:
The evolution of House Architecture in the Portuguese Estremadura from Copper- to Iron Age. The evolution of Architecture, Function and Social Significance
葡萄牙埃斯特雷马杜拉从铜器时代到铁器时代房屋建筑的演变。
- 批准号:
335673224 - 财政年份:2017
- 资助金额:
$ 19.44万 - 项目类别:
Research Grants
Elucidating the Genetic Architecture of Age-Dependent Neurodegenerative Diseases
阐明年龄依赖性神经退行性疾病的遗传结构
- 批准号:
376840 - 财政年份:2017
- 资助金额:
$ 19.44万 - 项目类别:
Fellowship Programs
Architecture and Society in an Age of Reform
改革时代的建筑与社会
- 批准号:
AH/P00993X/1 - 财政年份:2017
- 资助金额:
$ 19.44万 - 项目类别:
Research Grant
Mechanistic understanding of age-dependent genetic architecture
对年龄依赖性遗传结构的机制理解
- 批准号:
8985319 - 财政年份:2015
- 资助金额:
$ 19.44万 - 项目类别:
Mechanistic understanding of age-dependent genetic architecture
对年龄依赖性遗传结构的机制理解
- 批准号:
9753013 - 财政年份:2015
- 资助金额:
$ 19.44万 - 项目类别:
Mechanistic understanding of age-dependent genetic architecture
对年龄依赖性遗传结构的机制理解
- 批准号:
9321149 - 财政年份:2015
- 资助金额:
$ 19.44万 - 项目类别: