Defining molecular and gene-regulatory dysregulation in Down Syndrome tissues and models
定义唐氏综合症组织和模型中的分子和基因调节失调
基本信息
- 批准号:10433667
- 负责人:
- 金额:$ 19.44万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-03-10 至 2024-02-28
- 项目状态:已结题
- 来源:
- 关键词:AffectAgeArchitectureAtlasesAutomobile DrivingAutopsyBiologicalBrainCell LineCell NucleusCellsChromatinChromatin StructureChromosome 21Cluster AnalysisCognitive deficitsCollectionDataData SetDevelopmentDiseaseDisease ProgressionDisease modelDistalDown SyndromeEmbryoEnhancersEpigenetic ProcessEtiologyExperimental ModelsFoundationsFutureGene DosageGene ExpressionGene Expression ProfileGene Expression RegulationGene MutationGenesGenomicsGoalsHumanImpairmentIn VitroIndividualJointsKnowledgeLGALS3BP geneLanguageLanguage DevelopmentLeadLearningMapsMemoryMethylationMethyltransferaseModelingMolecularMolecular ProfilingMorphogenesisMorphologyNeocortexNeurodevelopmental DisorderNeurogliaNeuronsNewborn InfantPathogenesisPathologyPathway interactionsPatientsPregnancyProcessProteinsPublishingRegulator GenesRegulatory ElementReportingResearchResolutionRoleSamplingSmall Nuclear RNATechnologyTestingTherapeuticTimeTimeLineTissue ModelTissue-Specific Gene ExpressionTissuesarmbasebrain cellbrain tissuecell fate specificationcell typeepigenomeepigenomicsexperimental studygene regulatory networkhuman modelin vitro Modelin vivomRNA Differential Displaysmultiple omicsnerve stem cellneurodevelopmentneurogenesisneuropathologynovelprogenitorsexstem cell biologystem cell modelstem cellssynaptogenesistherapy developmenttranscription factortranscriptometranscriptome sequencingtreatment strategy
项目摘要
PROJECT ABSTRACT
Down syndrome (DS) is a neurodevelopmental disorder causing cognitive deficits including impaired learning
and memory, and language development, affecting 1 in 750 newborns. DS is caused by triplication of
chromosome 21 (T21), leading to altered gene dosage, and to changes in the proportion of brain cell types, and
in neuronal morphology and maturation, suggesting a neurodevelopmental etiology. However, the underlying
molecular mechanisms causing the observed neuropathology and functional deficits are still largely unknown.
Progress has been hindered by the overall complexity of brain architecture, an incomplete knowledge of the cell
types and molecular pathways dysregulated in DS during development, and limited human-relevant experimental
models. Moreover, bulk transcriptome and epigenome profiling indicates that T21 not only alters gene dosage
within the locus, but also leads to broad changes in gene expression and may lead to altered gene regulatory
dynamics. Based on these data, we hypothesize that increased chr21 gene dosage alters global gene expression
in neural progenitors, changing neural cell fate specification and differentiation. Here, we leverage novel genomic
technologies including joint single-nucleus transcriptome (snRNAseq), single-nucleus chromatin accessibility
(snATACseq) profiling, and single-cell joint chromatin interaction and methylation profiling (sc-m3C-seq), as well
as primary human neural progenitors (phNPCs), a validated model of human corticogenesis, to test this
hypothesis. We will first define cell-specific molecular and gene-regulatory dysregulation in DS by performing
joint snRNAseq, snATACseq and sc-m3C-seq in a collection of control and DS developing neocortex, at a time
period of peak neurogenesis. This comprehensive multi-omic profiling will uncover changes in cell composition
and cell-specific gene expression signatures in DS neocortex as well as reveal perturbations in cellular lineage
maps and specification. By integrating single-cell expression and epigenetic profiles we will define the proximal
and distal gene regulatory elements, as well as the transcription factors driving DS disease mechanisms. Finally,
we will leverage a unique collection of DS patient-derived and control phNPC lines to model disease in vitro in
order to characterize neural progenitor proliferation and specification in DS, as well as changes in neuronal
morphogenesis and synaptogenesis. We perform joint snRNAseq and snATACseq over a differentiation timeline
that recapitulates embryonic to mid-gestation corticogenesis in order to interrogate cellular, molecular and gene
regulatory dysregulation in DS and directly compare this model with in vivo DS mechanisms. Altogether, we
present a comprehensive project providing an in-depth cell biological and molecular characterization of DS
progression using in vivo tissues and a human-relevant model, and establishes this model for future mechanistic
interrogation. The long-term goal of this research is to provide the foundational molecular knowledge that will
ultimately contribute to the development of treatments for DS.
项目摘要
唐氏综合症(DS)是一种神经发育障碍,导致认知缺陷,包括学习受损
和记忆和语言发展,影响了750名新生儿中的1个。 DS是由
染色体21(T21),导致基因剂量改变,并导致脑细胞类型的比例变化,并且
在神经元的形态和成熟中,暗示了神经发育的病因。但是,基础
导致观察到的神经病理学和功能缺陷的分子机制仍然很大未知。
大脑体系结构的整体复杂性阻碍了进步,这是细胞的不完整知识
开发过程中DS的类型和分子途径在DS中失调,与人类相关的实验有限
型号。此外,批量转录组和表观基因组分析表明,T21不仅改变了基因剂量
在该基因座中,但也会导致基因表达的广泛变化,并可能导致基因调节改变
动力学。基于这些数据,我们假设增加ChR21基因剂量会改变全局基因表达
在神经祖细胞中,改变神经细胞命运的规范和分化。在这里,我们利用新颖的基因组
包括联合单核转录组(SNRNASEQ),单核染色质可及性在内的技术
(SNATACSEQ)分析和单细胞关节染色质相互作用和甲基化分析(SC-M3C-SEQ)
作为原发性人神经祖细胞(PHNPC),是一种经过验证的人皮质生成模型,以测试这一点
假设。我们将首先通过执行DS定义细胞特异性分子和基因调节失调
连接SNRNASEQ,SNATACSEQ和SC-M3C-SEQ在一个控制和DS的集合中,一次开发新皮层
峰值神经发生的时期。这种全面的多摩尼克分析将发现细胞组成的变化
DS新皮层中的细胞特异性基因表达特征以及细胞谱系的扰动
地图和规范。通过整合单细胞表达和表观遗传特征,我们将定义近端
和远端基因调节元件以及驱动DS疾病机制的转录因子。最后,
我们将利用独特的DS患者衍生和控制PHNPC系列的集合来在体外对疾病进行建模
为了表征DS中的神经祖细胞增殖和规范,以及神经元的变化
形态发生和突触发生。我们在分化时间表上执行snrnaseq和snatacseq
为了审问细胞,分子和基因
DS中的调节失调,并将该模型与体内DS机制直接进行比较。总共,我们
提出一个全面的项目,可提供深入的细胞生物学和DS的分子表征
使用体内组织和与人相关的模型进行进展
审讯。这项研究的长期目标是提供基础分子知识
最终有助于开发DS的治疗方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Luis de la Torre-Ubieta其他文献
Luis de la Torre-Ubieta的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Luis de la Torre-Ubieta', 18)}}的其他基金
Defining molecular and gene-regulatory dysregulation in Down Syndrome tissues and models
定义唐氏综合症组织和模型中的分子和基因调节失调
- 批准号:
10588168 - 财政年份:2022
- 资助金额:
$ 19.44万 - 项目类别:
Defining gene regulatory networks driving cortical evolution and brain development
定义驱动皮质进化和大脑发育的基因调控网络
- 批准号:
10616776 - 财政年份:2021
- 资助金额:
$ 19.44万 - 项目类别:
Defining gene regulatory networks driving cortical evolution and brain development
定义驱动皮质进化和大脑发育的基因调控网络
- 批准号:
10440238 - 财政年份:2021
- 资助金额:
$ 19.44万 - 项目类别:
Defining gene regulatory networks driving cortical evolution and brain development
定义驱动皮质进化和大脑发育的基因调控网络
- 批准号:
10039955 - 财政年份:2021
- 资助金额:
$ 19.44万 - 项目类别:
相似国自然基金
无线供能边缘网络中基于信息年龄的能量与数据协同调度算法研究
- 批准号:62372118
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
CHCHD2在年龄相关肝脏胆固醇代谢紊乱中的作用及机制
- 批准号:82300679
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
颗粒细胞棕榈酰化蛋白FXR1靶向CX43mRNA在年龄相关卵母细胞质量下降中的机制研究
- 批准号:82301784
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
年龄相关性黄斑变性治疗中双靶向药物递释策略及其机制研究
- 批准号:82301217
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多氯联苯与机体交互作用对生物学年龄的影响及在衰老中的作用机制
- 批准号:82373667
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
An Engineered Hydrogel Platform to Improve Neural Organoid Reproducibility for a Multi-Organoid Disease Model of 22q11.2 Deletion Syndrome
一种工程水凝胶平台,可提高 22q11.2 缺失综合征多器官疾病模型的神经类器官再现性
- 批准号:
10679749 - 财政年份:2023
- 资助金额:
$ 19.44万 - 项目类别:
Cellular mechanisms for the degeneration and aging of human rotator cuff tears
人类肩袖撕裂变性和衰老的细胞机制
- 批准号:
10648672 - 财政年份:2023
- 资助金额:
$ 19.44万 - 项目类别:
Genetic Studies of Alzheimer's Disease in Jewish and Arab Populations
犹太人和阿拉伯人群阿尔茨海默病的遗传学研究
- 批准号:
10639024 - 财政年份:2023
- 资助金额:
$ 19.44万 - 项目类别:
Hypothalamic Sleep-Wake Neuron Defects in Alzheimer’s disease
阿尔茨海默病中的下丘脑睡眠-觉醒神经元缺陷
- 批准号:
10770001 - 财政年份:2023
- 资助金额:
$ 19.44万 - 项目类别:
Asian American Prevention Research: A Populomics Epidemiology Cohort (ARISE)
亚裔美国人预防研究:人口组学流行病学队列 (ARISE)
- 批准号:
10724884 - 财政年份:2023
- 资助金额:
$ 19.44万 - 项目类别: