Establishing a Novel Instrumental Model for Elucidating Mitochondrial DNA-Associated Dysfunction and Pathogenicity
建立阐明线粒体 DNA 相关功能障碍和致病性的新仪器模型
基本信息
- 批准号:10434152
- 负责人:
- 金额:$ 36.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-01 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:AdipocytesAdipose tissueAerobicAreaBiochemical PathwayBiologyCellsCitric Acid CycleClustered Regularly Interspaced Short Palindromic RepeatsDevelopmentDiseaseEpidemicEquilibriumEukaryotaFoundationsFunctional disorderFutureGene AbnormalityGene DosageGeneticGenomeGrantHealthHumanHuman PathologyInner mitochondrial membraneIowaKnowledgeLipidsMediatingMitochondriaMitochondrial DNAModelingNuclearNucleic AcidsObesity associated diseasePathogenicityPhenotypePhysiologyRNAResearchRoleSaccharomyces cerevisiaeSideStudy modelsTechnologyTherapeuticTranslatingUniversitiesYarrowia lipolyticaYeast Model Systemcostdrug developmentengineering designflexibilityfluiditygenetic manipulationgenome editinghuman diseaseinsightmetabolic engineeringmitochondrial dysfunctionnovelobesity treatmentreconstitutionstemtooltool development
项目摘要
Project Summary/Abstract
The Shao group at Iowa State University aims to leverage their expertise in genetic tool development to
assemble a comprehensive mitochondrial genetic toolkit. The causative role of mitochondrial DNA is implicated
in a myriad of human diseases and disorders. However, human mitochondrial dysfunction studies suffer from
the absence of an ideal eukaryotic model. The well-studied model yeast, S. cerevisiae, is unsuitable due to its
mitochondrial physiology deviating too far from humans. We propose developing a new promising model to
heighten knowledge of human mtDNA, yielding new insights on mitochondrial dysfunction and pathogenicity.
We have identified that Yarrowia lipolytica strikes a perfect balance between practicality (i.e., low cost and
quick timescale of genetic manipulations as a low eukaryote) and tractability (i.e., mirroring human's obligate
aerobic needs). In addition, the overwhelming majority of current mitochondrial dysfunction studies focus solely
on nuclear-encoded mitochondrial gene abnormalities. This is mainly attributed to the fact that the explosive
progression of nuclear genome editing technology in the epoch of “post-CRISPR” has yet to translate to
mtDNA editing. We propose leveraging a recently discovered stem-loop RNA motif to overcome nucleic acid
import limitations – the largest technical barrier to the development of CRISPR-associated technologies. If this
strategy proves effective, we envision that many mtDNA manipulation tools will be developed by research labs
around the globe, following the same trajectory as the CRISPR nuclear genome manipulation revolution.
Over the next five years, in addition to the foundational tool development, we will strive for elucidating
mtDNA-phenotype relationships in the new model. The ability of Y. lipolytica to accumulate lipids makes it a
particularly suitable model for human adipocytes. Mitochondrial dysfunction in adipose tissue is involved in a
broad spectrum of epidemics plaguing human health. Mediated by our development of a mitochondrial genetic
toolkit, we will reconstitute mtDNA-associated human pathologies in a precise manner, enabling tailored drug
development and all the subsequent mechanistic studies. Moreover, we propose studying the impact of
modulating the fluidity of the inner mitochondrial membrane on altering mitochondrial physiology, which will
lead to the discovery of potential treatments of obesity-related diseases in the future. Lastly, along a side
research branch, we will integrate the developed mitochondrial genetic toolkit with our previous efforts in
metabolic engineering. We will leverage the multiplicity of mitochondria in a single cell as well as the high copy
number of mtDNA in a single mitochondrion to boost the dosage of the gene encoding the rate-limiting step in
a biochemical pathway. This strategy will revolutionize the metabolic engineering design of eukaryotic hosts to
produce a wide variety of compounds derived from TCA cycle or whose biosynthetic mechanism requires a
high ATP input. Altogether, this MIRA for ESI project will enable me to move into research areas distinct from
my existing ones and grant me the flexibility to follow important new research directions as opportunities arise.
项目总结/摘要
爱荷华州州立大学的Shao小组旨在利用他们在遗传工具开发方面的专业知识,
组装一个全面的线粒体基因工具包。线粒体DNA的致病作用是牵连
在无数人类疾病和失调中的作用。然而,人类线粒体功能障碍的研究遭受
缺乏理想的真核生物模型。研究较多的模式酵母S.酿酒酵母,由于其
线粒体生理学与人类相差太远。我们建议开发一种新的有前途的模型,
提高了对人类线粒体DNA的认识,对线粒体功能障碍和致病性产生了新的认识。
我们已经确定解脂耶氏酵母在实用性(即,低成本和
作为低真核生物的遗传操作的快速时间尺度)和易处理性(即,反映了人类的义务
有氧需要)。此外,目前绝大多数线粒体功能障碍研究仅关注
核编码线粒体基因异常这主要是由于爆炸物
核基因组编辑技术在“后CRISPR”时代的进展尚未转化为
mtDNA编辑我们建议利用最近发现的茎环RNA基序来克服核酸
进口限制--CRISPR相关技术开发的最大技术障碍。如果这
策略被证明是有效的,我们设想许多mtDNA操作工具将由研究实验室开发
围绕着地球仪,沿着与CRISPR核基因组操作革命相同的轨迹。
在接下来的五年里,除了基础工具的开发,我们将努力阐明
新模型中的mtDNA-表型关系。Y.脂肪分解,积累脂质,使其成为一个
特别适合于人脂肪细胞的模型。脂肪组织中的线粒体功能障碍涉及一种
危害人类健康的广泛流行病。通过我们的线粒体遗传学的发展
工具包,我们将以精确的方式重建mtDNA相关的人类病理,
发展和所有后续的机制研究。此外,我们建议研究
调节线粒体内膜的流动性,改变线粒体生理学,
在未来发现与肥胖有关的疾病的潜在治疗方法。最后,沿着沿着
研究分支,我们将整合开发的线粒体遗传工具包与我们以前的努力,
代谢工程我们将利用单个细胞中线粒体的多样性以及高拷贝
在一个单一的线粒体mtDNA的数量,以提高剂量的基因编码的限速步骤,
一种生化途径这一策略将彻底改变真核宿主的代谢工程设计,
产生多种衍生自TCA循环的化合物或其生物合成机制需要
高ATP输入。总之,这个MIRA的ESI项目将使我能够进入研究领域,
我现有的,并给予我的灵活性,以遵循重要的新的研究方向的机会出现。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zengyi Shao其他文献
Zengyi Shao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zengyi Shao', 18)}}的其他基金
Establishing a Novel Instrumental Model for Elucidating Mitochondrial DNA-Associated Dysfunction and Pathogenicity
建立阐明线粒体 DNA 相关功能障碍和致病性的新仪器模型
- 批准号:
10622629 - 财政年份:2021
- 资助金额:
$ 36.8万 - 项目类别:
Establishing a Novel Instrumental Model for Elucidating Mitochondrial DNA-Associated Dysfunction and Pathogenicity
建立阐明线粒体 DNA 相关功能障碍和致病性的新仪器模型
- 批准号:
10276839 - 财政年份:2021
- 资助金额:
$ 36.8万 - 项目类别:
相似海外基金
Deciphering the role of adipose tissue in common metabolic disease via adipose tissue proteomics
通过脂肪组织蛋白质组学解读脂肪组织在常见代谢疾病中的作用
- 批准号:
MR/Y013891/1 - 财政年份:2024
- 资助金额:
$ 36.8万 - 项目类别:
Research Grant
ESTABLISHING THE ROLE OF ADIPOSE TISSUE INFLAMMATION IN THE REGULATION OF MUSCLE MASS IN OLDER PEOPLE
确定脂肪组织炎症在老年人肌肉质量调节中的作用
- 批准号:
BB/Y006542/1 - 财政年份:2024
- 资助金额:
$ 36.8万 - 项目类别:
Research Grant
Activation of human brown adipose tissue using food ingredients that enhance the bioavailability of nitric oxide
使用增强一氧化氮生物利用度的食品成分激活人体棕色脂肪组织
- 批准号:
23H03323 - 财政年份:2023
- 资助金额:
$ 36.8万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of new lung regeneration therapies by elucidating the lung regeneration mechanism of adipose tissue-derived stem cells
通过阐明脂肪组织干细胞的肺再生机制开发新的肺再生疗法
- 批准号:
23K08293 - 财政年份:2023
- 资助金额:
$ 36.8万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Canadian Alliance of Healthy Hearts and Minds: Dissecting the Pathways Linking Ectopic Adipose Tissue to Cognitive Dysfunction
加拿大健康心灵联盟:剖析异位脂肪组织与认知功能障碍之间的联系途径
- 批准号:
479570 - 财政年份:2023
- 资助金额:
$ 36.8万 - 项目类别:
Operating Grants
Determinants of Longitudinal Progression of Adipose Tissue Inflammation in Individuals at High-Risk for Type 2 Diabetes: Novel Insights from Metabolomic Profiling
2 型糖尿病高危个体脂肪组织炎症纵向进展的决定因素:代谢组学分析的新见解
- 批准号:
488898 - 财政年份:2023
- 资助金额:
$ 36.8万 - 项目类别:
Operating Grants
A study on the role of brown adipose tissue in the development and maintenance of skeletal muscles
棕色脂肪组织在骨骼肌发育和维持中作用的研究
- 批准号:
23K19922 - 财政年份:2023
- 资助金额:
$ 36.8万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
A mechanism of lipid accumulation in brown adipose tissue
棕色脂肪组织中脂质积累的机制
- 批准号:
10605981 - 财政年份:2023
- 资助金额:
$ 36.8万 - 项目类别:
Obesity and Childhood Asthma: The Role of Adipose Tissue
肥胖和儿童哮喘:脂肪组织的作用
- 批准号:
10813753 - 财政年份:2023
- 资助金额:
$ 36.8万 - 项目类别:
Estrogen Signaling in the Ventromedial Hypothalamus Modulates Adipose Tissue Metabolic Adaptation
下丘脑腹内侧区的雌激素信号调节脂肪组织代谢适应
- 批准号:
10604611 - 财政年份:2023
- 资助金额:
$ 36.8万 - 项目类别: