Tools for parameterizing and visualizing electrophysiological rhythmic and arrhythmic features

用于参数化和可视化电生理节律和心律失常特征的工具

基本信息

  • 批准号:
    10433968
  • 负责人:
  • 金额:
    $ 31.6万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-09-01 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

Project Summary Cognition requires the dynamic coordination of neural ensembles across multiple brain regions. This is one of the biggest neuroscientific questions: how do neural populations form transient communication networks in the service of cognition? One exciting candidate mechanism by which this occurs is through the coupling of neural oscillations between brain regions. These oscillations are a ubiquitous feature of electrophysiology, occurring across species. Despite their wide study, recent work has highlighted many pitfalls in analyzing oscillations, largely centered around three major issues: 1) Oscillations should be measured relative to the aperiodic (1/f) background because, strictly speaking, oscillations are defined as any regions of the power spectrum that rise above the 1/f background, which has itself been shown to be dynamic in relation to both cognition and disease; 2) Most tools for extracting and quantifying oscillations assume that they are sinusoidal despite the fact that they rarely ever are. Further, those non-sinusoidal features may carry critical physiological information; 3) Traditional methods can conflate bursting and non-bursting oscillations, despite the rapidly mounting evidence that the two oscillatory modes are distinct, and may even play different functional roles. In this project we will significantly expand upon analytic software and platforms, developed by my lab, to test the validity of our tools against real and simulated data. These tools are designed specifically to address the three major oscillation analysis issues outlined above. After testing, these analytic toolboxes will then be moved online, to permit cloud-based, large-scale analysis of oscillations, the 1/f background, non-sinusoidal waveform features, and oscillatory bursts. We will then leverage new, dynamic, interactive in-brower visualization tools for data processing and exploration. All of these will be done using open-source tools, built to industry standards of software development, in a transparent manner. 1
项目摘要 认知需要跨多个大脑区域的神经集合的动态协调。这是其中之一 最大的神经科学问题:神经群体如何在大脑中形成瞬时通信网络 为认知服务?发生这种情况的一种令人兴奋的候选机制是通过神经耦合 大脑区域之间的振荡。这些振荡是电生理的一个普遍特征,发生在 跨物种。尽管他们进行了广泛的研究,但最近的工作突显了分析振荡的许多陷阱, 主要围绕三个主要问题:1)振荡应相对于非周期(1/f)进行测量 背景因为,严格地说,振荡被定义为功率谱中任何上升的区域 在1/f背景之上,这本身已被证明是与认知和疾病有关的动态的; 2)大多数用于提取和量化振荡的工具都假定它们是正弦的,尽管事实是 他们很少这样做。此外,这些非正弦特征可能携带关键的生理信息;3) 传统的方法可以将突发性和非突发性振荡混为一谈,尽管有越来越多的证据表明 这两个振荡模式是不同的,甚至可能扮演不同的功能角色。 在这个项目中,我们将大大扩展由我的实验室开发的分析软件和平台,以进行测试 根据真实和模拟数据验证我们工具的有效性。这些工具是专门为解决 上面概述了三个主要的振荡分析问题。测试后,这些分析工具箱将被 移动到网上,以实现基于云的、大规模的振荡分析,1/f背景,非正弦 波形特征和振荡爆发。然后,我们将利用新的、动态、交互式的In-Brower 用于数据处理和探索的可视化工具。所有这些都将使用开源工具来完成, 以透明的方式遵守软件开发的行业标准。 1

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bradley T. Voytek其他文献

Bradley T. Voytek的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bradley T. Voytek', 18)}}的其他基金

Tools for parameterizing and visualizing electrophysiological rhythmic and arrhythmic features
用于参数化和可视化电生理节律和心律失常特征的工具
  • 批准号:
    10442179
  • 财政年份:
    2019
  • 资助金额:
    $ 31.6万
  • 项目类别:
Tools for parameterizing and visualizing electrophysiological rhythmic and arrhythmic features
用于参数化和可视化电生理节律和心律失常特征的工具
  • 批准号:
    10198955
  • 财政年份:
    2019
  • 资助金额:
    $ 31.6万
  • 项目类别:
Tools for parameterizing and visualizing electrophysiological rhythmic and arrhythmic features
用于参数化和可视化电生理节律和心律失常特征的工具
  • 批准号:
    9803725
  • 财政年份:
    2019
  • 资助金额:
    $ 31.6万
  • 项目类别:
Tools for parameterizing and visualizing electrophysiological rhythmic and arrhythmic features
用于参数化和可视化电生理节律和心律失常特征的工具
  • 批准号:
    10001576
  • 财政年份:
    2019
  • 资助金额:
    $ 31.6万
  • 项目类别:
Tools for parameterizing and visualizing electrophysiological rhythmic and arrhythmic features
用于参数化和可视化电生理节律和心律失常特征的工具
  • 批准号:
    10704814
  • 财政年份:
    2019
  • 资助金额:
    $ 31.6万
  • 项目类别:

相似海外基金

WELL-CALF: optimising accuracy for commercial adoption
WELL-CALF:优化商业采用的准确性
  • 批准号:
    10093543
  • 财政年份:
    2024
  • 资助金额:
    $ 31.6万
  • 项目类别:
    Collaborative R&D
Investigating the Adoption, Actual Usage, and Outcomes of Enterprise Collaboration Systems in Remote Work Settings.
调查远程工作环境中企业协作系统的采用、实际使用和结果。
  • 批准号:
    24K16436
  • 财政年份:
    2024
  • 资助金额:
    $ 31.6万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Unraveling the Dynamics of International Accounting: Exploring the Impact of IFRS Adoption on Firms' Financial Reporting and Business Strategies
揭示国际会计的动态:探索采用 IFRS 对公司财务报告和业务战略的影响
  • 批准号:
    24K16488
  • 财政年份:
    2024
  • 资助金额:
    $ 31.6万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 31.6万
  • 项目类别:
    EU-Funded
Assessing the Coordination of Electric Vehicle Adoption on Urban Energy Transition: A Geospatial Machine Learning Framework
评估电动汽车采用对城市能源转型的协调:地理空间机器学习框架
  • 批准号:
    24K20973
  • 财政年份:
    2024
  • 资助金额:
    $ 31.6万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 31.6万
  • 项目类别:
    EU-Funded
Our focus for this project is accelerating the development and adoption of resource efficient solutions like fashion rental through technological advancement, addressing longer in use and reuse
我们该项目的重点是通过技术进步加快时装租赁等资源高效解决方案的开发和采用,解决更长的使用和重复使用问题
  • 批准号:
    10075502
  • 财政年份:
    2023
  • 资助金额:
    $ 31.6万
  • 项目类别:
    Grant for R&D
Engage2innovate – Enhancing security solution design, adoption and impact through effective engagement and social innovation (E2i)
Engage2innovate — 通过有效参与和社会创新增强安全解决方案的设计、采用和影响 (E2i)
  • 批准号:
    10089082
  • 财政年份:
    2023
  • 资助金额:
    $ 31.6万
  • 项目类别:
    EU-Funded
De-Adoption Beta-Blockers in patients with stable ischemic heart disease without REduced LV ejection fraction, ongoing Ischemia, or Arrhythmias: a randomized Trial with blinded Endpoints (ABbreviate)
在没有左心室射血分数降低、持续性缺血或心律失常的稳定型缺血性心脏病患者中停用β受体阻滞剂:一项盲法终点随机试验(ABbreviate)
  • 批准号:
    481560
  • 财政年份:
    2023
  • 资助金额:
    $ 31.6万
  • 项目类别:
    Operating Grants
Collaborative Research: SCIPE: CyberInfrastructure Professionals InnoVating and brOadening the adoption of advanced Technologies (CI PIVOT)
合作研究:SCIPE:网络基础设施专业人员创新和扩大先进技术的采用 (CI PIVOT)
  • 批准号:
    2321091
  • 财政年份:
    2023
  • 资助金额:
    $ 31.6万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了