A Genetically Engineered Human Fetal Liver Niche as a Novel Platform for Biomanufacturing of Hematopoietic Stem Cells
基因工程人类胎儿肝脏生态位作为造血干细胞生物制造的新平台
基本信息
- 批准号:10434709
- 负责人:
- 金额:$ 53.92万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-07-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectAllogenicArchitectureBiologyBiomanufacturingBiomimeticsBioreactorsBone MarrowCD34 geneCell CountCellsClinicalClustered Regularly Interspaced Short Palindromic RepeatsCoculture TechniquesCuesDevelopmentEndodermEngineeringEngraftmentEnvironmentEthicsFetal LiverFutureGATA6 transcription factorGeneticGenetic DiseasesGenetic EngineeringGrowth FactorHematologic NeoplasmsHematological DiseaseHematopoiesisHematopoieticHematopoietic Cell ProductionHematopoietic Stem Cell TransplantationHematopoietic stem cellsHomeostasisHumanHuman EngineeringIn VitroKnowledgeLifeLightLiverMalignant NeoplasmsMesodermPatientsPhysiologic pulsePopulationRoleSavingsSignal TransductionSignaling MoleculeSourceSuspensionsSynthetic GenesTechniquesTechnologyTimeTissuesUmbilical cord structurebasecell typeclinical translationcostdesignexperiencehematopoietic stem cell expansionhematopoietic stem cell nichein vivoin vivo engraftmentinduced pluripotent stem cellinnovationlarge scale productionmultidisciplinarynovelnovel strategiesprogramsself-renewalstem cell nichestem cell self renewalstem cellssuccesssynthetic biologytool
项目摘要
Human hematopoietic stem cells (HSCs) transplants can treat a range of hematological malignancies and
genetic blood disorders. However, success is limited by a lack of optimal donors and low number of stem cells
available from common HSC sources. To date, expansion of HSCs ex vivo for enhanced in vivo engraftment in
patients has been clinically ineffective. Insufficient cell numbers generated in culture or poor differentiation of the
starting cell population ex vivo has been contributing factors to improper clinical biomanufacturing of these cells.
The current techniques of hematopoietic cell biomanufacturing are expensive which further complicates
scalability and wide clinical translation. To overcome these critical barriers and help achieve the full life-
saving potential of HSCs, novel approaches to maintain and expand patient-derived HSCs in vitro are
needed. Stem cell self-renewal and differentiation are regulated through intricate crosstalk with neighboring cell
types, which secrete and organize a multifaceted milieu of signaling cues (stem cell niche). Removing stem cells
from their native environment can disrupt this homeostasis. HSCs experience limited self-renewal in the bone
marrow niche (BM) and are typically quiescent. In contrast, in fetal liver, HSCs undergo marked expansion and
become highly proliferative, which suggests that the fetal liver niche provides a unique microenvironment for
HSCs. However, access to viable human fetal liver is challenging due to ethical constraints. By genetically
engineering human induced pluripotent stem cells (hiPSCs), for the first time we could generate a fetal liver
tissue with hematopoietic niche capacity. In our approach, a transient and heterogeneous pulse of GATA6
transcription factor for 5 days resulted in co-development of mesoderm and endoderm layers in culture. The
culture further self-organized into a functional human fetal liver tissue (containing hematopoietic cells) without
the need to add exogenous growth factors to the culture. Our objective is to develop a universal, and
common platform for expansion of human HSCs that is scalable, simple, and economical. We
hypothesize that our human fetal liver tissue autonomously produces known and unknown factors that
contribute to hematopoiesis and can provide us with a “universal” and “programmable” cellular
microenvironment, or niche for this purpose. In aim 1 we will employ a GATA6-engineered Fetal LIver Niche
(FLIN) for the expansion of HSCs. In aim 2, we will interrogate hematopoietic niche environment through
engineering a customizable fetal liver, DESigner Liver Niche (DESLIN) and in aim 3, we will examine
scalability of FLIN-HSC cultures in microcarrier-based Stirred suspension bioreactors. Overall, the
development and optimization of this platform has the potential to dramatically reduce the cost of large-scale
production of HSCs and will shed light on the biology and key signaling molecules affecting hematopoiesis.
Subsequently, the delivered knowledge and tools will be applicable in a broad spectrum of hematological
diseases including malignancies and genetic disorders.
人类造血干细胞(HSCs)移植可以治疗一系列血液系统恶性肿瘤
遗传性血液疾病。然而,由于缺乏合适的捐献者和干细胞数量较少,成功受到限制。
可从常见的HSC来源获得。到目前为止,造血干细胞的体外扩增用于增强体内植入
患者在临床上一直无效。培养过程中产生的细胞数量不足或分化不良
在体外启动细胞群体一直是导致这些细胞临床生物制造不当的因素。
目前的造血细胞生物制造技术昂贵,这进一步复杂化了
可伸缩性和广泛的临床翻译。为了克服这些关键障碍,帮助实现完整的生活-
保存造血干细胞的潜力,在体外维持和扩增患者来源的造血干细胞的新方法是
需要的。干细胞的自我更新和分化是通过与邻近细胞的复杂串扰来调节的
类型,它们分泌和组织一个多方面的信号提示环境(干细胞利基)。清除干细胞
会破坏这种动态平衡。造血干细胞在骨骼中经历有限的自我更新
骨髓龛(BM),通常是静止的。相比之下,在胎肝中,HSCs经历了显著的扩张和
变得高度增殖,这表明胎儿肝脏的生态位为
造血干细胞。然而,由于伦理限制,获得可存活的人类胎儿肝脏是具有挑战性的。由基因决定的
人类诱导多能干细胞(HiPSCs)的工程,我们第一次可以产生胎儿肝脏
具有造血龛能力的组织。在我们的方法中,GATA6的瞬变和非均匀脉冲
转录因子作用5天后,培养中胚层和内胚层共同发育。这个
进一步自组织培养成有功能的人胎肝组织(包含造血细胞),不需要
需要在培养中加入外源生长因子。我们的目标是发展一种普遍的、
用于扩展人类HSC的通用平台,可扩展、简单且经济。我们
假设我们的人胎肝组织自主产生已知和未知的因子
有助于造血,并能为我们提供一个“通用的”和“可编程的”细胞
微环境,或为此目的的利基。在目标1中,我们将使用GATA6设计的胎儿肝脏利基
(FLIN)用于HSC的扩增。在目标2中,我们将通过以下方式询问造血生态位环境
设计一个可定制的胎儿肝脏,设计肝脏利基(Deslin),在Aim 3中,我们将检查
微载体搅拌悬浮生物反应器中FLIN-HSC培养的可扩展性。总体而言,
该平台的开发和优化有可能极大地降低大规模的成本
并将阐明影响造血的生物学和关键信号分子。
随后,所提供的知识和工具将适用于广泛的血液学领域
包括恶性肿瘤和遗传病在内的疾病。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Synthetic living machines: A new window on life.
- DOI:10.1016/j.isci.2021.102505
- 发表时间:2021-05-21
- 期刊:
- 影响因子:5.8
- 作者:Ebrahimkhani MR;Levin M
- 通讯作者:Levin M
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mo Reza Ebrahimkhani其他文献
Mo Reza Ebrahimkhani的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mo Reza Ebrahimkhani', 18)}}的其他基金
Integration of systems and synthetic biology to advance development of human tissues ex vivo
系统与合成生物学的整合促进人体组织离体发育
- 批准号:
10020408 - 财政年份:2019
- 资助金额:
$ 53.92万 - 项目类别:
A Genetically Engineered Human Fetal Liver Niche as a Novel Platform for Biomanufacturing of Hematopoietic Stem Cells
基因工程人类胎儿肝脏生态位作为造血干细胞生物制造的新平台
- 批准号:
9917828 - 财政年份:2019
- 资助金额:
$ 53.92万 - 项目类别:
A Genetically Engineered Human Fetal Liver Niche as a Novel Platform for Biomanufacturing of Hematopoietic Stem Cells
基因工程人类胎儿肝脏生态位作为造血干细胞生物制造的新平台
- 批准号:
10198020 - 财政年份:2019
- 资助金额:
$ 53.92万 - 项目类别:
Integration of systems and synthetic biology to advance development of human tissues ex vivo
系统与合成生物学的整合促进人体组织离体发育
- 批准号:
10458678 - 财政年份:2019
- 资助金额:
$ 53.92万 - 项目类别:
A Genetically Engineered Human Fetal Liver Niche as a Novel Platform for Biomanufacturing of Hematopoietic Stem Cells
基因工程人类胎儿肝脏生态位作为造血干细胞生物制造的新平台
- 批准号:
10063780 - 财政年份:2019
- 资助金额:
$ 53.92万 - 项目类别:
Integration of systems and synthetic biology to advance development of human tissues ex vivo
系统与合成生物学的整合促进人体组织离体发育
- 批准号:
10245099 - 财政年份:2019
- 资助金额:
$ 53.92万 - 项目类别:
Integration of systems and synthetic biology to advance development of human tissues ex vivo
系统与合成生物学的整合促进人体组织离体发育
- 批准号:
9803639 - 财政年份:2019
- 资助金额:
$ 53.92万 - 项目类别:
相似海外基金
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 53.92万 - 项目类别:
Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 53.92万 - 项目类别:
Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 53.92万 - 项目类别:
Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 53.92万 - 项目类别:
Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 53.92万 - 项目类别:
Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 53.92万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 53.92万 - 项目类别:
Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
- 批准号:
2301846 - 财政年份:2023
- 资助金额:
$ 53.92万 - 项目类别:
Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 53.92万 - 项目类别:
Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
- 批准号:
23K16076 - 财政年份:2023
- 资助金额:
$ 53.92万 - 项目类别:
Grant-in-Aid for Early-Career Scientists