Lung-specific ultrasound beamforming for diagnostic imaging
用于诊断成像的肺部特异性超声波束形成
基本信息
- 批准号:10440831
- 负责人:
- 金额:$ 21.74万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:AcousticsAcuteAcute Respiratory Distress SyndromeAddressAdoptionAirAlveolarAnatomyBase SequenceBedsCOVID-19ChronicChronic PhaseClinicalCommunitiesComplexCustomDataData SetDiagnosisDiagnostic ImagingDiseaseElectronsFamily suidaeHuman bodyImageImage AnalysisImaging DeviceLeftLinkLungLung diseasesMachine LearningMapsMeasurementMeasuresMethodsMiniaturizationModalityModelingMonitorMorphologic artifactsPhysicsPleuraPleuralPleural effusion disorderPneumothoraxPublic HealthPulmonary PathologySensitivity and SpecificitySeveritiesSideSourceStructureStructure of parenchyma of lungSumSyndromeSystemTechniquesTissue imagingTissuesUltrasonographyX-Ray Computed TomographyX-Ray Medical Imagingaccurate diagnosisbaseconvolutional neural networkcostdesigndiagnostic valueexperimental studyimaging modalityimaging systemimprovedin silicoin vivointerstitiallung basal segmentlung imagingpoint of careportabilityprogramsrational designsimulationsoft tissuetoolultrasound
项目摘要
PROJECT SUMMARY
Accurate diagnosis and monitoring of lung disease, including the urgent need arising from Covid-19, could be
widely addressed by ultrasound imaging. The standard modalities that diagnose and monitor lung disease are
X-ray imaging and computed tomography (CT) due to their extensive diagnostic capabilities. Ultrasound may not
be normally thought of as a primary lung imaging modality, however in the hands of an expert user it has a
sensitivity and specificity ranging from 90% to 100% relative to CT.
For non-expert users the interpretation of lung ultrasound images can be complex because ultrasound cannot
penetrate the soft-tissue/air interface. Thus, lung ultrasound relies on the interpretation of imaging "artefacts"
that appear to come from deep inside the air space of the lung, but are actually complex reverberations from the
pleural interface. These reflections carry information about the underlying lung pathology. This indirect imaging
and clinical interpretation approach is fundamentally different from imaging in soft tissue, where echos come
directly from the structures being imaged. Nevertheless, delay-and-sum beamforming methods currently used
in ultrasound systems are identical for lung imaging and soft tissue imaging. The lack of understanding of the
fundamental acoustics at the complex soft-tissue/air interface remains an impediment to the rational design of
ultrasound imaging sequences that can relate directly to lung acoustics and would be more sensitive to disease.
To overcome this challenge, we propose to develop and validate new ultrasound imaging and beamforming
methods using a physics-based approach that establishes a quantitative link between ultrasound imaging and
the disease state of the lungs. We hypothesize that ultrasound beamforming techniques that are designed
specifically for the lung and its complex reverberation physics will generate higher quality images, improved
clinical interpretability, and diagnostic capabilities. We will develop acoustical simulation tools and simulations of
the human body and lung disease that are experimentally calibrated to accurately represent the relevant
reverberation physics, such as A-line and B-line artefacts. Spatial coherence beamformers, which rely on
reverberation as a source of contrast and machine learning beamformers will be designed and optimized to
detect lung disease. These beamformers will be implemented on a programmable scanner and compared to
conventional B-mode imaging. If successful, this proposal will yield ultrasound imaging methods that are more
sensitive to lung disease, with clearer clinical interpretability, that can be deployed in current ultrasound imaging
systems.
项目总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gianmarco Pinton其他文献
Gianmarco Pinton的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gianmarco Pinton', 18)}}的其他基金
Lung-specific ultrasound beamforming for diagnostic imaging
用于诊断成像的肺部特异性超声波束形成
- 批准号:
10673127 - 财政年份:2022
- 资助金额:
$ 21.74万 - 项目类别:
A machine learning ultrasound beamformer based on realistic wave physics for high body mass index imaging
基于真实波物理学的机器学习超声波束形成器,用于高体重指数成像
- 批准号:
10595030 - 财政年份:2021
- 资助金额:
$ 21.74万 - 项目类别:
A machine learning ultrasound beamformer based on realistic wave physics for high body mass index imaging
基于真实波物理学的机器学习超声波束形成器,用于高体重指数成像
- 批准号:
10435438 - 财政年份:2021
- 资助金额:
$ 21.74万 - 项目类别:
Shear shock wave propagation in the brain: high frame-rate ultrasound imaging, characterization, and simulations
剪切冲击波在大脑中的传播:高帧率超声成像、表征和模拟
- 批准号:
8863091 - 财政年份:2015
- 资助金额:
$ 21.74万 - 项目类别:
Shear shock wave propagation in the brain: high frame-rate ultrasound imaging, characterization, and simulations
剪切冲击波在大脑中的传播:高帧率超声成像、表征和模拟
- 批准号:
9039163 - 财政年份:2015
- 资助金额:
$ 21.74万 - 项目类别:
Shear shock wave propagation in the brain: high frame-rate ultrasound imaging, characterization, and simulations
剪切冲击波在大脑中的传播:高帧率超声成像、表征和模拟
- 批准号:
9253438 - 财政年份:2015
- 资助金额:
$ 21.74万 - 项目类别:
相似海外基金
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
- 批准号:
EP/Y003527/1 - 财政年份:2024
- 资助金额:
$ 21.74万 - 项目类别:
Research Grant
The Association Between Aging, Inflammation, and Clinical Outcomes in Acute Respiratory Distress Syndrome
衰老、炎症与急性呼吸窘迫综合征临床结果之间的关联
- 批准号:
10722669 - 财政年份:2023
- 资助金额:
$ 21.74万 - 项目类别:
Sedatives Pharmacology in Acute Respiratory Distress Syndrome- SPA
急性呼吸窘迫综合征中的镇静药理学 - SPA
- 批准号:
491387 - 财政年份:2023
- 资助金额:
$ 21.74万 - 项目类别:
Fellowship Programs
New mechanism-based TREM-1 therapy for acute respiratory distress syndrome
基于新机制的 TREM-1 疗法治疗急性呼吸窘迫综合征
- 批准号:
10678788 - 财政年份:2023
- 资助金额:
$ 21.74万 - 项目类别:
Great Lakes Clinical Center of the Acute Respiratory Distress Syndrome, Pneumonia and Sepsis (APS) Consortium
急性呼吸窘迫综合征、肺炎和败血症 (APS) 联盟五大湖临床中心
- 批准号:
10646578 - 财政年份:2023
- 资助金额:
$ 21.74万 - 项目类别:
Effect of ADAMTS13 on pathogenesis of acute respiratory distress syndrome
ADAMTS13 对急性呼吸窘迫综合征发病机制的影响
- 批准号:
23K08447 - 财政年份:2023
- 资助金额:
$ 21.74万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A Novel Synthetic Biology-Derived Microbiome Therapeutic to Treat Viral-Induced Acute Respiratory Distress Syndrome (ARDS)
一种新型合成生物学衍生的微生物疗法,可治疗病毒引起的急性呼吸窘迫综合征(ARDS)
- 批准号:
10601865 - 财政年份:2023
- 资助金额:
$ 21.74万 - 项目类别:
Development of drug therapy targeting ferroptosis, iron-dependent cell death for acute respiratory distress syndrome.
开发针对铁死亡(急性呼吸窘迫综合征的铁依赖性细胞死亡)的药物疗法。
- 批准号:
23K08360 - 财政年份:2023
- 资助金额:
$ 21.74万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Sustainable Implementation of Prone Positioning for the Acute Respiratory Distress Syndrome
持续实施俯卧位治疗急性呼吸窘迫综合征
- 批准号:
10722194 - 财政年份:2023
- 资助金额:
$ 21.74万 - 项目类别:
Point-of-care system to assess the risk of trauma-induced acute respiratory distress syndrome
用于评估创伤引起的急性呼吸窘迫综合征风险的护理点系统
- 批准号:
10594793 - 财政年份:2023
- 资助金额:
$ 21.74万 - 项目类别:














{{item.name}}会员




