Intelligently predicting viral spillover risks from bats and other wild mammals
智能预测蝙蝠和其他野生哺乳动物的病毒溢出风险
基本信息
- 批准号:10435545
- 负责人:
- 金额:$ 18.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-06-22 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressArtificial IntelligenceAttentionBase SequenceBioinformaticsCOVID-19COVID-19 pandemicChiropteraClinical TreatmentComputing MethodologiesCoronavirusDataData SetDatabasesDiseaseDisease OutbreaksEcologyEcosystemEpidemiologistEventFAIR principlesFecesFilovirusFoundationsFutureGenerationsGoalsGrainGraphHumanImmune ToleranceImmune responseImmunological ModelsInfectious Diseases ResearchInformation RetrievalInfrastructureIntelligenceInvestigationKnowledgeLeadLifeLinkLogicMammalsMetadataMethodsMolecularMuridaeNamesNational Institute of Allergy and Infectious DiseaseNatural Language ProcessingNatureOutcomeParamyxovirusPathogenicityPublic HealthPublicationsPublishingResearchResearch PersonnelResourcesRiskRisk EstimateRodentSamplingSerologyServicesSourceStructureTaxonTaxonomyTestingTimeTissuesTreesUncertaintyUrineViralViral Load resultViral reservoirVirusWorkZoonosesbasebioinformatics pipelinebioinformatics resourcedata reusedigitalflexibilityglobal healthhigh riskimprovedinclusion criteriaindexinginnovationinsightinterestknowledge graphknowledgebasenovelpathogenic viruspreventresponsesecondary analysisspillover eventsurveillance studytraittransmission processvirus host interaction
项目摘要
PROJECT SUMMARY
The transmission or ‘spillover’ of wildlife viruses to humans is a critical threat to global health, with outbreaks of
viral pathogens like filoviruses, paramyxoviruses, and coronaviruses all originating in wild mammals. A key
outstanding question is whether specific taxonomic groups, such as bats, warrant extra surveillance as ‘special
reservoirs’ of viruses that are potentially pathogenic to humans. However, existing host-virus datasets are not
sufficiently resolved to predict fine-grain risk for species or genera. An effective response must therefore
address two core aims: (i) synthesizing knowledge regarding virus-to-mammal interactions; and (ii) using that
knowledgebase to robustly predict future spillover events (i.e., zoonotic risk). To enable robust analysis and
reusability of public datasets of NIAID’s Bioinformatics Resource Center (BRC; especially NCBI Virus and
Virus Pathogen Resources, ViPR), the project will develop Host-Virus Data Intelligence to address three main
problems for data reuse: confidence of the taxonomic assignments of mammals and viruses in observations;
confidence in the evidence for proposed mammal-virus interactions; and connecting all the relevant data in
published texts that are hidden from existing databases. The project team will construct a novel bioinformatic
pipeline that will digitally connect taxonomic knowledge, use it to search dark data to find evidence of potential
host-virus interactions, and then link it together using metadata layers (‘data about the data’) to form a more
expansive host-virus knowledge graph than previously feasible. The project’s computational approach
leverages information extraction methods in natural language processing as well as novel applications of
artificial intelligence methods such as probabilistic inductive logic programming. A key anticipated outcome is
to expand the dataset of host-virus interactions by 3-fold compared to comprehensive existing datasets. The
proposed project will lay the foundation for a new generation of work reusing host-virus interaction data to test
previously inaccessible hypotheses about how species’ traits impact viral spillover to humans. Shifting the
paradigm to graph-based analyses, compared to purely taxonomic representations of host-virus interactions,
will allow researchers to directly investigate the impact of ecosystem structure and human encroachment upon
viral loads. Determining whether all mammals have equal risk of viral spillover, or whether some groups have
higher taxon-specific zoonotic risk (e.g., horseshoe bats, murid rodents), is critical information for public health
workers and epidemiologists. More definitive risk quantification will also help researchers identify which
ecophysiological adaptations predispose certain groups to tolerating more viruses, which may in turn lead to
clinical treatments by modeling the immune responses of wild mammals. Filling the identified gaps in host-virus
knowledge is therefore essential to aid the progress of zoonotic disease research in the wake of COVID-19.
项目摘要
野生动物病毒向人类的传播或“溢出”是对全球健康的重大威胁,
病毒病原体,如丝状病毒、副粘病毒和冠状病毒,都起源于野生哺乳动物。一个关键
一个悬而未决的问题是,特定的分类群体,如蝙蝠,是否需要额外的监测,因为“特殊”
对人类具有潜在致病性的病毒的储存库。但是,现有的宿主病毒数据集并不
足以预测物种或属的细粒风险。因此,有效的应对措施必须
解决两个核心目标:(i)综合有关病毒与哺乳动物相互作用的知识;(ii)利用
知识库来稳健地预测未来的溢出事件(即,人畜共患病风险)。为了实现强大的分析和
NIAID的生物信息学资源中心(BRC)的公共数据集的可重用性;特别是NCBI病毒和
病毒病原体资源,ViPR),该项目将开发主机病毒数据智能,以解决三个主要问题
数据再利用的问题:观察中哺乳动物和病毒分类归属的可信度;
对拟议的哺乳动物-病毒相互作用证据的信心;并将所有相关数据
从现有数据库中隐藏的已发布文本。该项目团队将构建一个新的生物信息学
管道,将数字连接分类学知识,用它来搜索暗数据,以找到潜在的证据
主机-病毒交互,然后使用元数据层(“关于数据的数据”)将其链接在一起,以形成一个更详细的
扩展主机病毒知识图比以前可行。该项目的计算方法
利用自然语言处理中的信息提取方法以及
人工智能方法,如概率归纳逻辑编程。一个关键的预期成果是
与现有的综合数据集相比,将宿主-病毒相互作用的数据集扩大了3倍。的
拟议的项目将为新一代的工作奠定基础,重用主机-病毒交互数据进行测试
关于物种特征如何影响病毒对人类的溢出的以前无法实现的假设。转移
范例到基于图形的分析,与宿主-病毒相互作用的纯粹分类学表示相比,
将使研究人员能够直接调查生态系统结构和人类入侵的影响,
病毒载量确定是否所有哺乳动物都有相同的病毒溢出风险,或者是否有些群体有
较高的分类群特异性人畜共患病风险(例如,马蹄形蝙蝠,鼠形啮齿动物),是公共卫生的重要信息
工作人员和流行病学家。更明确的风险量化也将有助于研究人员确定
生态生理适应使某些群体倾向于容忍更多的病毒,这反过来可能导致
通过模拟野生哺乳动物的免疫反应进行临床治疗。填补宿主病毒中已确定的空白
因此,在COVID-19之后,知识对于帮助人畜共患病研究的进展至关重要。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Holistic understanding of contemporary ecosystems requires integration of data on domesticated, captive and cultivated organisms.
对当代生态系统的整体理解需要整合有关驯化,俘虏和栽培生物的数据。
- DOI:10.3897/bdj.9.e65371
- 发表时间:2021
- 期刊:
- 影响因子:1.3
- 作者:Groom Q;Adriaens T;Bertolino S;Phelps K;Poelen JH;Reeder DM;Richardson DM;Simmons NB;Upham N
- 通讯作者:Upham N
The macroevolutionary impact of recent and imminent mammal extinctions on Madagascar.
- DOI:10.1038/s41467-022-35215-3
- 发表时间:2023-01-10
- 期刊:
- 影响因子:16.6
- 作者:Michielsen, Nathan M.;Goodman, Steven M.;Soarimalala, Voahangy;van der Geer, Alexandra A. E.;Davalos, Liliana M.;Saville, Grace, I;Upham, Nathan;Valente, Luis
- 通讯作者:Valente, Luis
Genomics expands the mammalverse
基因组学扩大了哺乳动物的范围
- DOI:10.1126/science.add2209
- 发表时间:2023
- 期刊:
- 影响因子:56.9
- 作者:Upham, Nathan S.;Landis, Michael J.
- 通讯作者:Landis, Michael J.
Wanted: Standards for FAIR taxonomic concept representations and relationships
寻求:FAIR 分类概念表示和关系的标准
- DOI:10.3897/biss.5.75587
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Sterner, Beckett;Upham, Nathan;Gupta, Prashant;Powell, Caleb;Franz, Nico
- 通讯作者:Franz, Nico
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DeeAnn Reeder其他文献
DeeAnn Reeder的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DeeAnn Reeder', 18)}}的其他基金
Intelligently predicting viral spillover risks from bats and other wild mammals
智能预测蝙蝠和其他野生哺乳动物的病毒溢出风险
- 批准号:
10289637 - 财政年份:2021
- 资助金额:
$ 18.8万 - 项目类别:
相似海外基金
TRUST2 - Improving TRUST in artificial intelligence and machine learning for critical building management
TRUST2 - 提高关键建筑管理的人工智能和机器学习的信任度
- 批准号:
10093095 - 财政年份:2024
- 资助金额:
$ 18.8万 - 项目类别:
Collaborative R&D
QUANTUM-TOX - Revolutionizing Computational Toxicology with Electronic Structure Descriptors and Artificial Intelligence
QUANTUM-TOX - 利用电子结构描述符和人工智能彻底改变计算毒理学
- 批准号:
10106704 - 财政年份:2024
- 资助金额:
$ 18.8万 - 项目类别:
EU-Funded
Artificial intelligence in education: Democratising policy
教育中的人工智能:政策民主化
- 批准号:
DP240100602 - 财政年份:2024
- 资助金额:
$ 18.8万 - 项目类别:
Discovery Projects
Application of artificial intelligence to predict biologic systemic therapy clinical response, effectiveness and adverse events in psoriasis
应用人工智能预测生物系统治疗银屑病的临床反应、有效性和不良事件
- 批准号:
MR/Y009657/1 - 财政年份:2024
- 资助金额:
$ 18.8万 - 项目类别:
Fellowship
REU Site: CyberAI: Cybersecurity Solutions Leveraging Artificial Intelligence for Smart Systems
REU 网站:CyberAI:利用人工智能实现智能系统的网络安全解决方案
- 批准号:
2349104 - 财政年份:2024
- 资助金额:
$ 18.8万 - 项目类别:
Standard Grant
EAGER: Artificial Intelligence to Understand Engineering Cultural Norms
EAGER:人工智能理解工程文化规范
- 批准号:
2342384 - 财政年份:2024
- 资助金额:
$ 18.8万 - 项目类别:
Standard Grant
Reversible Computing and Reservoir Computing with Magnetic Skyrmions for Energy-Efficient Boolean Logic and Artificial Intelligence Hardware
用于节能布尔逻辑和人工智能硬件的磁斯格明子可逆计算和储层计算
- 批准号:
2343607 - 财政年份:2024
- 资助金额:
$ 18.8万 - 项目类别:
Standard Grant
I-Corps: Translation Potential of a Secure Data Platform Empowering Artificial Intelligence Assisted Digital Pathology
I-Corps:安全数据平台的翻译潜力,赋能人工智能辅助数字病理学
- 批准号:
2409130 - 财政年份:2024
- 资助金额:
$ 18.8万 - 项目类别:
Standard Grant
Planning: Artificial Intelligence Assisted High-Performance Parallel Computing for Power System Optimization
规划:人工智能辅助高性能并行计算电力系统优化
- 批准号:
2414141 - 财政年份:2024
- 资助金额:
$ 18.8万 - 项目类别:
Standard Grant
Reassessing the Appropriateness of currently-available Data-set Protection Levers in the era of Artificial Intelligence
重新评估人工智能时代现有数据集保护手段的适用性
- 批准号:
23K22068 - 财政年份:2024
- 资助金额:
$ 18.8万 - 项目类别:
Grant-in-Aid for Scientific Research (B)