SCH: Wearable Augmented Prediction of Burnout in Nurses: A Synergy of Engineering, Bioethics, Nursing
SCH:护士倦怠的可穿戴增强预测:工程、生物伦理学、护理的协同作用
基本信息
- 批准号:10437161
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-04-11 至 2026-01-31
- 项目状态:未结题
- 来源:
- 关键词:AbsenteeismAddressAdoptedAdoptionAdverse effectsAffectBioethicsCase StudyClient satisfactionClinicClinicalDataData SetDiscipline of NursingDistressElectronic Health RecordEmployeeEngineeringEthicsFloridaGoalsHealthHealth PersonnelHealthcare SystemsHigh PrevalenceHospital AdministratorsHospitalsIndividualInternationalMeasuresMedical ErrorsModelingMoralsNosocomial InfectionsNursesOccupationalOccupationsPatient-Focused OutcomesPatientsPerformancePerformance at workPhysiologicalPredictive FactorProductivityQuality of CareRegistered nurseReportingResourcesRestRiskScienceSiteStressTechnologyTranslatingVisionWorkWorkplaceWorld Health Organizationadministrative databasebaseburnoutcare deliverycohortexperienceglobal healthinsightinterpersonal conflictmulti-task learningpatient safetypsychologicpublic health relevancesmart watchsynergism
项目摘要
ABSTRACT:
The 21st century workforce is experiencing increasing job demands while employers optimize job resources to meet regulatory, fiscal and productivity standards. This is perhaps most apparent in today’s healthcare system, wherein the workforce is under constant stress to cope with rapidly changing care delivery approaches, widespread adoption of electronic health records, and increased reliance on publicly reported quality metrics. In May 2019, the World Health Organization defined burnout as an occupational phenomenon. Unfortunately, burnout is underrecognized by those who suffer from it, and it typically goes undetected until employees’ performance deteriorates or catastrophes occur in workplace. Therefore, this project’s overarching goal is to develop a data-driven technology for predicting impending burnout before its effects on health and work performance become manifest. As a case study, this project will establish predictability of burnout in registered nurses (RNs). In hospital settings, 35%-45% of RNs report burnout primarily driven by increased work demands (higher patient acuity), work inefficiencies, interpersonal conflict, moral distress, and low level of control over decisions that affect their work. Burnout in RNs is associated with poor patient outcomes (increased risk of medical errors, hospital-acquired infections), lower quality of care, increased absenteeism and poor patient satisfaction. Within this context, the proposed project’s vision and aims are presented. This project’s vision is to develop a technology to predict burnout in RNs (as a case study) by combining workplace, psychological, and physiological factors, and exploring the barriers to adopting such a technology. This effort focuses on the following aims: Aim1. To create a unique, open- access, de-identified dataset that transforms the science of burnout internationally and informs the interaction of continuous physiological measures (measured from smart watches) and repeated (quarterly) psychological (measured using validated rating scales) and work-related factors (administrative databases) for predicting burnout (Aim 2) in RNs at Mayo Clinic’s Florida (Cohorts-A&B) and Rochester (Cohort-C) sites. Aim 2. To develop an analytical framework combining probabilistic graphical models (PGMs) and multitask learning (MTL) to derive interpretable predictions of burnout. PGMs addresses the challenge of inherent stochasticity of burnout manifestation across individuals, and MTL will identify common burnout factors predictive of burnout risks (high, medium and low). Predictability established using Cohort-A will be validated in Cohorts-B&C. Aim 3. Explore barriers (bioethics and administrative) to adopting burnout prediction technologies by assessing perspectives of RNs, nurse supervisors and hospital administrators.
抽象的:
21世纪的劳动力正在经历不断提高的工作需求,而雇主优化工作资源以满足监管,财政和生产力标准。在当今的医疗保健系统中,这可能是最明显的,在当今的医疗保健系统中,劳动力承受着持续的压力,以应对快速变化的护理交付方法,宽广采用电子健康记录以及对公开报告的质量指标的责任增加。 2019年5月,世界卫生组织将倦怠定义为发生的现象。不幸的是,遭受苦难的人认为倦怠未被识别,并且在员工的绩效检测或灾难发生在工作场所中。因此,该项目的总体目标是开发一种以数据为基础的技术来预测即将来临的倦怠,然后在其对健康和工作绩效的影响变得明显之前。作为一个案例研究,该项目将在注册护士(RNS)中建立倦怠的可预测性。在医院环境中,RN的35%-45%通过增加的工作需求(患者敏锐度更高),工作效率低下,人际关系冲突,道德困扰以及对影响其工作的决策的低水平控制,报告了倦怠的主要驱动力。 RN中的倦怠与患者不良结局有关(医疗错误的风险增加,医院获得感染的风险增加),较低的护理质量,在这种情况下增加,拟议的项目的愿景和目的是提出的。该项目的愿景是开发一项技术,通过结合工作场所,心理和身体因素来预测RNS(作为案例研究)的倦怠,并探索采用这种技术的障碍。这项工作重点是以下目的:AIM1。 To create a unique, open-access, de-identified dataset that transforms the science of burnout internationally and informs the interaction of continuous physical measurements (measured from smart watches) and repeated (quarterly) psychological (measured using validated rating scales) and work-related factors (administrative databases) for predicting burnout (Aim 2) in RNs at Mayo Clinic’s Florida (Cohorts-A&B) and Rochester (队列-C)站点。目标2。开发一个结合概率图形模型(PGM)和多任务学习(MTL)的分析框架,以得出可解释的倦怠预测。 PGMS解决了个体倦怠表现固有的随机性的挑战,MTL将确定可预测倦怠风险(高,中和低)的常见倦怠因素。使用队列A建立的可预测性将在Cohorts-B&C中进行验证。 AIM 3。通过评估RN,护士主管和医院管理员的观点来探索障碍(生物伦理学和行政)来采用倦怠预测技术。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Arjun Prasanna Athreya其他文献
Arjun Prasanna Athreya的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Arjun Prasanna Athreya', 18)}}的其他基金
SCH: Wearable Augmented Prediction of Burnout in Nurses: A Synergy of Engineering, Bioethics, Nursing
SCH:护士倦怠的可穿戴增强预测:工程、生物伦理学、护理的协同作用
- 批准号:
10608159 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Caring4Caregivers: A theory-driven mobile solution to promote self-care and well-being among caregivers of individuals with Alzheimer’s andrelated dementias
Caring4Caregivers:一种理论驱动的移动解决方案,旨在促进阿尔茨海默病和相关痴呆症患者的护理人员的自我护理和福祉
- 批准号:
10618164 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
SCH: Wearable Augmented Prediction of Burnout in Nurses: A Synergy of Engineering, Bioethics, Nursing
SCH:护士倦怠的可穿戴增强预测:工程、生物伦理学、护理的协同作用
- 批准号:
10608159 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Caring4Caregivers: A theory-driven mobile solution to promote self-care and well-being among caregivers of individuals with Alzheimer’s andrelated dementias
Caring4Caregivers:一种理论驱动的移动解决方案,旨在促进阿尔茨海默病和相关痴呆症患者的护理人员的自我护理和福祉
- 批准号:
10395174 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Carpometacarpal Osteoarthritis: Understanding the Intersection of Muscle Mechanics, Joint Instability, and Pain
腕掌骨关节炎:了解肌肉力学、关节不稳定和疼痛的交叉点
- 批准号:
10597142 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Actigraphy Enhanced Clinical Chronic Lower Back Pain Management
体动记录仪增强临床慢性腰痛管理
- 批准号:
10211966 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别: