SCH: Wearable Augmented Prediction of Burnout in Nurses: A Synergy of Engineering, Bioethics, Nursing
SCH:护士倦怠的可穿戴增强预测:工程、生物伦理学、护理的协同作用
基本信息
- 批准号:10437161
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-04-11 至 2026-01-31
- 项目状态:未结题
- 来源:
- 关键词:AbsenteeismAddressAdoptedAdoptionAdverse effectsAffectBioethicsCase StudyClient satisfactionClinicClinicalDataData SetDiscipline of NursingDistressElectronic Health RecordEmployeeEngineeringEthicsFloridaGoalsHealthHealth PersonnelHealthcare SystemsHigh PrevalenceHospital AdministratorsHospitalsIndividualInternationalMeasuresMedical ErrorsModelingMoralsNosocomial InfectionsNursesOccupationalOccupationsPatient-Focused OutcomesPatientsPerformancePerformance at workPhysiologicalPredictive FactorProductivityQuality of CareRegistered nurseReportingResourcesRestRiskScienceSiteStressTechnologyTranslatingVisionWorkWorkplaceWorld Health Organizationadministrative databasebaseburnoutcare deliverycohortexperienceglobal healthinsightinterpersonal conflictmulti-task learningpatient safetypsychologicpublic health relevancesmart watchsynergism
项目摘要
ABSTRACT:
The 21st century workforce is experiencing increasing job demands while employers optimize job resources to meet regulatory, fiscal and productivity standards. This is perhaps most apparent in today’s healthcare system, wherein the workforce is under constant stress to cope with rapidly changing care delivery approaches, widespread adoption of electronic health records, and increased reliance on publicly reported quality metrics. In May 2019, the World Health Organization defined burnout as an occupational phenomenon. Unfortunately, burnout is underrecognized by those who suffer from it, and it typically goes undetected until employees’ performance deteriorates or catastrophes occur in workplace. Therefore, this project’s overarching goal is to develop a data-driven technology for predicting impending burnout before its effects on health and work performance become manifest. As a case study, this project will establish predictability of burnout in registered nurses (RNs). In hospital settings, 35%-45% of RNs report burnout primarily driven by increased work demands (higher patient acuity), work inefficiencies, interpersonal conflict, moral distress, and low level of control over decisions that affect their work. Burnout in RNs is associated with poor patient outcomes (increased risk of medical errors, hospital-acquired infections), lower quality of care, increased absenteeism and poor patient satisfaction. Within this context, the proposed project’s vision and aims are presented. This project’s vision is to develop a technology to predict burnout in RNs (as a case study) by combining workplace, psychological, and physiological factors, and exploring the barriers to adopting such a technology. This effort focuses on the following aims: Aim1. To create a unique, open- access, de-identified dataset that transforms the science of burnout internationally and informs the interaction of continuous physiological measures (measured from smart watches) and repeated (quarterly) psychological (measured using validated rating scales) and work-related factors (administrative databases) for predicting burnout (Aim 2) in RNs at Mayo Clinic’s Florida (Cohorts-A&B) and Rochester (Cohort-C) sites. Aim 2. To develop an analytical framework combining probabilistic graphical models (PGMs) and multitask learning (MTL) to derive interpretable predictions of burnout. PGMs addresses the challenge of inherent stochasticity of burnout manifestation across individuals, and MTL will identify common burnout factors predictive of burnout risks (high, medium and low). Predictability established using Cohort-A will be validated in Cohorts-B&C. Aim 3. Explore barriers (bioethics and administrative) to adopting burnout prediction technologies by assessing perspectives of RNs, nurse supervisors and hospital administrators.
摘要:
世纪的劳动力正在经历不断增长的工作需求,而雇主优化工作资源,以满足监管,财政和生产力标准。这可能在当今的医疗保健系统中最为明显,其中劳动力处于不断的压力下,以科普快速变化的护理提供方法,电子健康记录的广泛采用以及对公开报告的质量指标的依赖增加。2019年5月,世界卫生组织将职业倦怠定义为一种职业现象。不幸的是,职业倦怠被那些遭受职业倦怠的人低估了,并且通常在员工的表现恶化或工作场所发生灾难之前不会被发现。因此,该项目的首要目标是开发一种数据驱动的技术,用于在其对健康和工作表现的影响变得明显之前预测即将到来的倦怠。作为一个案例研究,本研究将建立可预测的职业倦怠在注册护士(RNs)。在医院环境中,35%-45%的RN报告倦怠主要是由工作需求增加(更高的患者敏锐度),工作效率低下,人际冲突,道德困扰以及对影响其工作的决策控制水平低所驱动。RN的倦怠与患者预后不良(医疗错误风险增加,医院获得性感染),护理质量降低,缺勤率增加和患者满意度差有关。在此背景下,提出了拟议项目的愿景和目标。该项目的愿景是通过结合工作场所,心理和生理因素,并探索采用这种技术的障碍,开发一种技术来预测RN的倦怠(作为案例研究)。这项工作的重点是实现以下目标:目标1。创造一个独特的,开放获取的,去识别数据集,在国际上改变了倦怠科学,并告知连续生理测量的相互作用(从智能手表测量)和重复心理学季刊(使用经验证的评级量表测量)和工作相关因素(管理数据库)用于预测马约诊所的佛罗里达(Cohorts-A&B)和罗切斯特(Cohort-C)地点的RN的倦怠(Aim 2)。目标二。建立一个结合概率图形模型(PGMs)和多任务学习(MTL)的分析框架,以获得可解释的倦怠预测。PGM解决了个体倦怠表现固有随机性的挑战,MTL将识别预测倦怠风险(高、中、低)的常见倦怠因素。使用队列A建立的可预测性将在队列B &C中得到验证。目标3。探讨障碍(生物伦理学和行政)采用倦怠预测技术通过评估RNs,护士主管和医院管理人员的观点。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Arjun Prasanna Athreya其他文献
Arjun Prasanna Athreya的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Arjun Prasanna Athreya', 18)}}的其他基金
SCH: Wearable Augmented Prediction of Burnout in Nurses: A Synergy of Engineering, Bioethics, Nursing
SCH:护士倦怠的可穿戴增强预测:工程、生物伦理学、护理的协同作用
- 批准号:
10608159 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Research Grant














{{item.name}}会员




