Hepatic Steatosis Quantification with Ultrasound
超声定量肝脏脂肪变性
基本信息
- 批准号:10436480
- 负责人:
- 金额:$ 57.66万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-04-01 至 2026-03-31
- 项目状态:未结题
- 来源:
- 关键词:AffectAgreementAlgorithmsAmericanBenchmarkingBiological MarkersCalibrationCardiovascular DiseasesClassificationClinicalDetectionDevelopmentDiabetes MellitusDiagnosisEvaluationFamilyFatty LiverFatty acid glycerol estersFibrosisFrequenciesGuidelinesHepatologyImageInterventionLeadLiverLiver CirrhosisLiver FibrosisMagnetic Resonance ElastographyMagnetic Resonance ImagingMeasurementMeasuresMethodsModelingModernizationNoiseOutcomePatientsPenetrationPerformancePhasePopulations at RiskProtonsROC CurveReference StandardsRegression AnalysisReproducibilityRiskScanningSerumSignal TransductionSpecificitySpeedStagingTechnologyTestingTimeX-Ray Computed Tomographyattenuationcostcost effectivedensitydiabetes managementfatty liver diseasefollow-upimprovednew technologynon-alcoholic fatty liver diseasenonalcoholic steatohepatitisnovelpatient populationpoint of careprototyperib bone structurescreeningserial imagingsignal processingsoundultrasoundwireless
项目摘要
PROJECT SUMMARY
Quantification of liver steatosis has weighty implications in management of Nonalcoholic Fatty Liver Disease (a
condition affecting 75-100 million Americans), diabetes mellitus, and cardiovascular disease. Serum
biomarkers, computed tomography, and existing ultrasound methods have low sensitivity or specificity for
steatosis staging. Proton Density Fat Fraction (PDFF) measured by MRI has high accuracy, but is limited by
accessibility and cost. Here we propose a novel ultrasound technology, Spectrum Normalization Attenuation
Imaging (SNAI), to quantify ultrasound attenuation coefficient for accurate liver steatosis staging. SNAI does
not require a calibration phantom, and is robust to rib shadowing as well as phase aberration and reverberation
clutter from the body wall. Accuracy of SNAI for steatosis staging is demonstrated by a promising correlation
coefficient of 0.91 with MRI-PDFF in 50 patients. In this project, we will prototype, optimize, and evaluate SNAI
on a low-cost, pocket-sized, wireless ultrasound probe, which can be conveniently used for screening and
follow-up at the point-of-care setting such as the office of a family doctor or hepatologist.
Specific Aim 1: Technical Development. We will use phantom and patient studies to advance and optimize
SNAI on the the wireless ultrasound probe. Acquisition parameters and post processing algorithms will be
optimized for both fundamental and harmonic SNAI imaging. We will suppress reverberation clutter and correct
for sound speed mismatch in liver for more accurate steatosis quantification.
Specific Aim 2: Patient study. We will use the SNAI prototypes optimized in Aim 1 to study 250 steatosis
patients with clinically indicated MRI-PDFF to investigate the efficacy of SNAI for steatosis quantification.
Correlation analysis will be performed to assess the association of SNAI with MRI-PDFF. Steatosis will also be
categorized as S0, S1, and S2/S3 according to PDFF. Receiver operating characteristic analyses will be
performed to evaluate performance of SNAI for detecting ≥S1 and ≥S2. The agreement between SNAI and
PDFF classification will be evaluated using the Kappa statistic. Fibroscan CAP will be used for benchmarking.
Specific Aim 3: Reproducibility study. Two sonographers and two hepatology residents will repeatedly scan
a subset of subjects (50 patients) studied in Aim 2. Intraclass correlation coefficients will be used to evaluate
the inter-operator agreement for SNAI measurements. The within patient variance component from the model
will provide an estimate of the inter-operator variance, which represents a lower bound for the minimum
detectable difference for longitudinal follow-ups.
Successful completion of this project will result in a safe, cost-effective, and easily accessible ultrasound
solution for accurate quantification of liver steatosis for diagnosis and frequent follow-up of this very large
patient population at point-of-care settings such as the office of a hepatologist or family doctor.
项目摘要
肝脏脂肪变性的定量对非酒精性脂肪肝病的治疗具有重大影响(A
影响75-1亿美国人),糖尿病和心血管疾病。血清
生物标志物,计算机断层扫描和现有的超声方法具有低灵敏度或特异性
脂肪变性分期。通过MRI测量的质子密度分数(PDFF)具有很高的精度,但受到限制
可访问性和成本。在这里,我们提出了一种新型的超声技术,频谱归一化衰减
成像(SNAI),以量化超声衰减系数以进行准确的肝脏脂肪变性分期。 Snai做到了
不需要校准幻影,并且可以稳健地遮盖肋骨以及相差和恢复
从身体墙上的混乱。 SNAI用于脂肪变性分期的准确性通过有希望的相关性证明了
50名患者的MRI-PDFF系数为0.91。在这个项目中,我们将原型,优化和评估SNAI
在低成本,袖珍的无线超声探针上,可方便地用于筛查和
诸如家庭医生或肝病学家办公室之类的护理点的后续行动。
特定目标1:技术发展。我们将使用幻影和患者研究来提高和优化
在无线超声探针上进行SNAI。获取参数和后处理算法将是
针对基本和谐波SNAI成像进行了优化。我们将抑制混乱和纠正
对于肝脏中的声速不匹配,以进行更准确的脂肪变性定量。
特定目标2:患者研究。我们将使用在AIM 1中优化的SNAI原型研究250脂肪变性
临床上表明MRI-PDFF的患者研究了SNAI对脂肪变性定量的效率。
将进行相关分析以评估SNAI与MRI-PDFF的关联。脂肪变性也将是
根据PDF,归类为S0,S1和S2/S3。接收器操作特征分析将是
进行评估SNAI的性能以检测≥s1和≥s2的性能。 Snai和
PDF分类将使用KAPPA统计量进行评估。纤维帽将用于基准测试。
特定目标3:可重复性研究。两名超声检查员和两个肝病居民将反复扫描
AIM 2中的受试者(50名患者)的子集(50名患者)。类内相关系数将用于评估
SNAI测量的操作员协议。模型中的患者方差成分
将提供对操作员差异的估计,该方差表示最小的下限
纵向随访的可检测差异。
该项目的成功完成将导致安全,经济高效且易于访问的超声波
解决肝脏脂肪变性的准确定量诊断和经常随访的解决方案
在护理点环境中的患者人数,例如肝病学家或家庭医生的办公室。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shigao Chen其他文献
Shigao Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shigao Chen', 18)}}的其他基金
High-Resolution Flow Imaging of Optic Nerve Head and Retrolaminar Microvascular Circulation
视神经乳头和层后微血管循环的高分辨率血流成像
- 批准号:
10649225 - 财政年份:2023
- 资助金额:
$ 57.66万 - 项目类别:
Renal Microvessel Imaging for Characterization of Chronic Kidney Disease
肾脏微血管成像用于表征慢性肾脏病
- 批准号:
10581889 - 财政年份:2023
- 资助金额:
$ 57.66万 - 项目类别:
Ultrasensitive Doppler Ultrasound for Evaluation of Rheumatoid Arthritis
超灵敏多普勒超声评估类风湿关节炎
- 批准号:
10523605 - 财政年份:2022
- 资助金额:
$ 57.66万 - 项目类别:
Ultrasensitive Doppler Ultrasound for Evaluation of Rheumatoid Arthritis
超灵敏多普勒超声评估类风湿关节炎
- 批准号:
10659056 - 财政年份:2022
- 资助金额:
$ 57.66万 - 项目类别:
3D Ultra-sensitive Ultrasound Microvessel Imaging for Breast Mass Differentiation
3D 超灵敏超声微血管成像用于乳腺肿块分化
- 批准号:
10442667 - 财政年份:2021
- 资助金额:
$ 57.66万 - 项目类别:
Shear Wave Elastography of Myofascial Trigger Points Using a Compact Scanner
使用紧凑型扫描仪进行肌筋膜触发点的剪切波弹性成像
- 批准号:
9236961 - 财政年份:2017
- 资助金额:
$ 57.66万 - 项目类别:
Ultrasound Elastography for Liver Fibrosis Staging
超声弹性成像用于肝纤维化分期
- 批准号:
9288188 - 财政年份:2015
- 资助金额:
$ 57.66万 - 项目类别:
Virtual Biopsy with Ultrasound for Liver Fibrosis Staging
超声虚拟活检用于肝纤维化分期
- 批准号:
7726313 - 财政年份:2009
- 资助金额:
$ 57.66万 - 项目类别:
相似国自然基金
云边端架构下联邦学习下行通信压缩算法与协议研究
- 批准号:62372487
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
面向分布式机器学习的网络协议优化算法
- 批准号:
- 批准年份:2021
- 资助金额:59 万元
- 项目类别:面上项目
面向分布式机器学习的网络协议优化算法
- 批准号:62172206
- 批准年份:2021
- 资助金额:59.00 万元
- 项目类别:面上项目
水下多模态无线传感网路由协议及资源调度算法研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于分布式下推自动机理论的多协议多域异构网络路径优化算法研究
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
相似海外基金
A Mobile Health Application to Detect Absence Seizures using Hyperventilation and Eye-Movement Recordings
一款使用过度换气和眼动记录检测失神癫痫发作的移动健康应用程序
- 批准号:
10696649 - 财政年份:2023
- 资助金额:
$ 57.66万 - 项目类别:
High-throughput thermodynamic and kinetic measurements for variant effects prediction in a major protein superfamily
用于预测主要蛋白质超家族变异效应的高通量热力学和动力学测量
- 批准号:
10752370 - 财政年份:2023
- 资助金额:
$ 57.66万 - 项目类别:
A non-invasive, automated platform for hemodynamic assessment of patients at risk of heart failure or pulmonary hypertension
用于对有心力衰竭或肺动脉高压风险的患者进行血流动力学评估的无创自动化平台
- 批准号:
10699067 - 财政年份:2023
- 资助金额:
$ 57.66万 - 项目类别:
High-Resolution Lymphatic Mapping of the Upper Extremities with MRI
使用 MRI 进行上肢高分辨率淋巴图谱分析
- 批准号:
10663718 - 财政年份:2023
- 资助金额:
$ 57.66万 - 项目类别: