The neuropathology of cerebellum in spinal muscular atrophy

脊髓性肌萎缩症小脑的神经病理学

基本信息

  • 批准号:
    10436518
  • 负责人:
  • 金额:
    $ 40.08万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-03-01 至 2025-02-28
  • 项目状态:
    未结题

项目摘要

This is a resubmission (A1) of application 1R15 NS120154-01, “The neuropathology of cerebellum in spinal muscular atrophy”, which was reviewed in June 2020 at the ZRG1 MDCN-R (86) section. Spinal muscular atrophy (SMA) is the leading genetic cause of infant mortality. It arises from the mutation of the survival motor neuron one (SMN1) gene. Despite decades of research, its mechanisms of neuropathology are far from clear. The recent US FDA approved SMN restoration therapies (Nusinersen, Zolgensma, and Risdiplam) are effective in rescuing the motor dysfunction but not cure for SMA. It is not clear how long the effect will last, nor whether patients will suffer problems due to dysfunction of SMN deficient neurons in other parts of the nervous system. Accumulating evidence suggests that low levels of SMN not only alter the function of spinal motor neurons, but also of neurons and neural circuits in other parts of the motor network. However, currently there is little understanding of neuronal pathology in SMA beyond the spinal cord motor neuron (MN) circuit. As new treatments allow patients to live longer, knowledge of the role of central motor network in the neuropathology of SMA will be key for developing long-term prognoses and treatment strategies for patients. The objective of this application is to investigate cerebellar pathology and neural circuit dysfunction in SMA mouse models using magnetic resonance imaging (MRI) and electrophysiological techniques. The rational for this project is based on the important role of cerebellum in motor control, the reports of cerebellar pathology in human SMA patients, as well as our preliminary data showing alterations in the structure and function of cerebellar neural network in mouse models of SMA. Our central hypothesis is that in SMA, alterations in the neurons and neural circuits of the cerebellum decrease cerebellar output and alter descending motor commands from the motor cortex and brainstem to the spinal cord, contributing to neuropathology and motor system dysfunction. This central hypothesis will be tested by three specific aims: 1) Identify changes in the morphology and fiber connections of the cerebellum in SMNΔ7 and MN rescue mice by magnetic resonance imaging techniques; 2) Elucidate the functional alteration of cerebellar neurons and neural circuits related to SMA pathophysiology using electrophysiological techniques; 3) Relate changes in cerebellar structure and neural circuit function to SMA disease progression in MN rescue mouse model. To determine the contribution of structural and functional pathology in the cerebellum to the phenotype of SMA, we will use MRI and electrophysiology to investigate the development of neuropathology in the cerebellum at pre-symptomatic (postnatal day 3–4, P3–P4), early- (P7–P8), and end-symptomatic (P12–P13) stage of SMA. The comparison studies between SMNΔ7 and motor neuron MN mouse models will confirm and elucidate the correlation of cerebellar neuropathology with spinal motor neuron dysfunction in SMA mice. Identifying the start and progression of cerebellar neuropathology will indicate how cerebellar structural or functional pathology or both contribute to the SMA phenotype. The proposed research is innovative because it will be the first thorough study of the dysfunction and its mechanisms of the cerebellar neural network in SMA mice with a unique combination of electrophysiological, MRI and immunohistochemical techniques. This kind of study is required to develop a complete systematic understanding of the pathophysiology of SMA, and almost no studies so far have investigated the critical issue of dysfunction in the brain network and its contribution to motor dysfunction. The proposed research is significant because understanding specific abnormalities cerebellar network can lead to new targets for potential therapeutics aimed at preserving motor function in SMA patients.
这是申请1R15 NS120154-01的再提交(A1),“脊柱小脑的神经病理学”

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jianli Sun其他文献

Jianli Sun的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jianli Sun', 18)}}的其他基金

Cell Electrophysiology Core
细胞电生理学核心
  • 批准号:
    10425002
  • 财政年份:
    2022
  • 资助金额:
    $ 40.08万
  • 项目类别:

相似海外基金

Linking Epidermis and Mesophyll Signalling. Anatomy and Impact in Photosynthesis.
连接表皮和叶肉信号传导。
  • 批准号:
    EP/Z000882/1
  • 财政年份:
    2024
  • 资助金额:
    $ 40.08万
  • 项目类别:
    Fellowship
Digging Deeper with AI: Canada-UK-US Partnership for Next-generation Plant Root Anatomy Segmentation
利用人工智能进行更深入的挖掘:加拿大、英国、美国合作开发下一代植物根部解剖分割
  • 批准号:
    BB/Y513908/1
  • 财政年份:
    2024
  • 资助金额:
    $ 40.08万
  • 项目类别:
    Research Grant
Simultaneous development of direct-view and video laryngoscopes based on the anatomy and physiology of the newborn
根据新生儿解剖生理同步开发直视喉镜和视频喉镜
  • 批准号:
    23K11917
  • 财政年份:
    2023
  • 资助金额:
    $ 40.08万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Genetics of Extreme Phenotypes of OSA and Associated Upper Airway Anatomy
OSA 极端表型的遗传学及相关上呼吸道解剖学
  • 批准号:
    10555809
  • 财政年份:
    2023
  • 资助金额:
    $ 40.08万
  • 项目类别:
computational models and analysis of the retinal anatomy and potentially physiology
视网膜解剖学和潜在生理学的计算模型和分析
  • 批准号:
    2825967
  • 财政年份:
    2023
  • 资助金额:
    $ 40.08万
  • 项目类别:
    Studentship
Computational comparative anatomy: Translating between species in neuroscience
计算比较解剖学:神经科学中物种之间的翻译
  • 批准号:
    BB/X013227/1
  • 财政年份:
    2023
  • 资助金额:
    $ 40.08万
  • 项目类别:
    Research Grant
Doctoral Dissertation Research: Social and ecological influences on brain anatomy
博士论文研究:社会和生态对大脑解剖学的影响
  • 批准号:
    2235348
  • 财政年份:
    2023
  • 资助金额:
    $ 40.08万
  • 项目类别:
    Standard Grant
Development of a novel visualization, labeling, communication and tracking engine for human anatomy.
开发一种新颖的人体解剖学可视化、标签、通信和跟踪引擎。
  • 批准号:
    10761060
  • 财政年份:
    2023
  • 资助金额:
    $ 40.08万
  • 项目类别:
Understanding the functional anatomy of nociceptive spinal output neurons
了解伤害性脊髓输出神经元的功能解剖结构
  • 批准号:
    10751126
  • 财政年份:
    2023
  • 资助金额:
    $ 40.08万
  • 项目类别:
Anatomy and functions of LTP interactomes and their relationship to small RNA signals in systemic acquired resistance
LTP相互作用组的解剖和功能及其与系统获得性耐药中小RNA信号的关系
  • 批准号:
    BB/X013049/1
  • 财政年份:
    2023
  • 资助金额:
    $ 40.08万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了